NGSS
Maryland

This alignment guide shows how KnowAtom’s integrated model of science curriculum is designed for NGSS

Phenomena Based Lessons Aligned to NGSS

  • All Grades
  • K
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
Science Lesson State Standards State ID Grades Performance Expectation
Earth and Moon Patterns MD NGSS 1-ESS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Use observations of the sun, moon, and stars to describe patterns that can be predicted.

Sun Position and Shadow Patterns MD NGSS 1-ESS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Use observations of the sun, moon, and stars to describe patterns that can be predicted.

Seasonal Temperatures and Water Cycles MD NGSS 1-ESS1-2 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Make observations at different times of year to relate the amount of daylight to the time of year.

Seasonal Patterns MD NGSS 1-ESS1-2 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Make observations at different times of year to relate the amount of daylight to the time of year.

Ant Behavior and Food MD NGSS 1-LS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Bird Beak Structure and Function MD NGSS 1-LS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Plant Structures MD NGSS 1-LS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Engineering Litter Collectors MD NGSS 1-LS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Insect Anatomy - Structure and Function MD NGSS 1-LS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Living and Nonliving Things MD NGSS 1-LS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Engineering Dams MD NGSS 1-LS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Parent and Offspring Behaviors MD NGSS 1-LS1-2 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive.

Living and Nonliving Things MD NGSS 1-LS3-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents.

Plant Structures MD NGSS 1-LS3-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents.

Parent and Offspring Behaviors MD NGSS 1-LS3-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents. *Students focus on animals in this unit.

Sounds and Senses MD NGSS 1-PS4-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate.
Engineering Communication Devices MD NGSS 1-PS4-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance.
Making Sounds and Instruments MD NGSS 1-PS4-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate.

Light MD NGSS 1-PS4-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Make observations to construct an evidence-based account that objects in darkness can be seen only when illuminated.

Materials and Light MD NGSS 1-PS4-3 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Plan and conduct investigations to determine the effect of placing objects made with different materials in the path of a beam of light.

Earth Events MD NGSS 2-ESS1-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Use information from several sources to provide evidence that Earth events can occur quickly or slowly.

Controlling Erosion MD NGSS 2-ESS2-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.

Mapping Land and Water MD NGSS 2-ESS2-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Develop a model to represent the shapes and kinds of land and bodies of water in an area.

Water Flow MD NGSS 2-ESS2-3 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot.

How Plants Grow MD NGSS 2-LS2-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Plan and conduct an investigation to determine if plants need sunlight and water to grow.

Butterfly Life Cycle MD NGSS 2-LS2-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.

Flowers MD NGSS 2-LS2-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.

Butterfly Structure and Function MD NGSS 2-LS2-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.

Engineering Hand Pollinators MD NGSS 2-LS2-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.

Predator-Prey Relationships MD NGSS 2-LS4-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Make observations of plants and animals to compare the diversity of life in different habitats.

Habitats MD NGSS 2-LS4-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Make observations of plants and animals to compare the diversity of life in different habitats.

Matter and Properties MD NGSS 2-PS1-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties.

Property of Materials MD NGSS 2-PS1-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties.

Engineering Owl Shelters MD NGSS 2-PS1-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. 

Floating and Sinking MD NGSS 2-PS1-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

Engineering Boats MD NGSS 2-PS1-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

Engineering Owl Shelters MD NGSS 2-PS1-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

Action-Reaction Forces MD NGSS 2-PS1-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

Friction MD NGSS 2-PS1-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

Property of Materials MD NGSS 2-PS1-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

Engineering Owl Shelters MD NGSS 2-PS1-3 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object.

Matter and Properties MD NGSS 2-PS1-4 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot.

Water Flow MD NGSS 2-PS1-4 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Obtain information to identify where water is found on Earth and that it can be solid or liquid.

Flood Control Engineering MD NGSS 3-5-ETS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Define a simple design problem reflecting a need or want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Electric Cars MD NGSS 3-5-ETS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Information Transfer MD NGSS 3-5-ETS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Sound Barriers MD NGSS 3-5-ETS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Permeable Concrete MD NGSS 3-5-ETS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Filtration Devices MD NGSS 3-5-ETS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Roller Coasters MD NGSS 3-5-ETS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Launchers MD NGSS 3-5-ETS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Hearing Toys MD NGSS 3-5-ETS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

 Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Skyscrapers MD NGSS 3-5-ETS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Library Scopes MD NGSS 3-5-ETS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Pick-and-Place Devices MD NGSS 3-5-ETS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Engineering Water Prisms MD NGSS 3-5-ETS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

 Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Flood Control Engineering MD NGSS 3-5-ETS1-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Generate and compare multiple possible solutions to a problem, based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Electric Cars MD NGSS 3-5-ETS1-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Information Transfer MD NGSS 3-5-ETS1-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Sound Barriers MD NGSS 3-5-ETS1-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Permeable Concrete MD NGSS 3-5-ETS1-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Library Scopes MD NGSS 3-5-ETS1-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Filtration Devices MD NGSS 3-5-ETS1-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Roller Coasters MD NGSS 3-5-ETS1-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Launchers MD NGSS 3-5-ETS1-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Skyscrapers MD NGSS 3-5-ETS1-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Hearing Toys MD NGSS 3-5-ETS1-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Water Prisms MD NGSS 3-5-ETS1-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

 Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Engineering Pick-and-Place Devices MD NGSS 3-5-ETS1-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Flood Control Engineering MD NGSS 3-5-ETS1-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Engineering Electric Cars MD NGSS 3-5-ETS1-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Engineering Information Transfer MD NGSS 3-5-ETS1-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Engineering Sound Barriers MD NGSS 3-5-ETS1-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Engineering Filtration Devices MD NGSS 3-5-ETS1-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Engineering Water Prisms MD NGSS 3-5-ETS1-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Engineering Permeable Concrete MD NGSS 3-5-ETS1-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Engineering Roller Coasters MD NGSS 3-5-ETS1-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Engineering Launchers MD NGSS 3-5-ETS1-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Engineering Skyscrapers MD NGSS 3-5-ETS1-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. 

Engineering Library Scopes MD NGSS 3-5-ETS1-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Engineering Pick-and-Place Devices MD NGSS 3-5-ETS1-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Engineering Hearing Toys MD NGSS 3-5-ETS1-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Weather and Climate MD NGSS 3-ESS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.

Earth's Interacting Systems MD NGSS 3-ESS2-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.

Earth Materials and Water Flow MD NGSS 3-ESS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.

Heat and Evaporation MD NGSS 3-ESS2-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Obtain and combine information to describe climates in different regions of the world.

Earth's Interacting Systems MD NGSS 3-ESS2-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Obtain and combine information to describe climates in different regions of the world.

Weather and Climate MD NGSS 3-ESS2-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Obtain and combine information to describe climates in different regions of the world.

Energy from the Sun MD NGSS 3-ESS2-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Obtain and combine information to describe climates in different regions of the world. 

Flood Control Engineering MD NGSS 3-ESS3-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.

Engineering Permeable Concrete MD NGSS 3-ESS3-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.

Earth Materials and Water Flow MD NGSS 3-ESS3-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Obtain and combine information to describe climates in different regions of the world.

Plant Growth and Acid Rain MD NGSS 3-LS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.

Life Cycles MD NGSS 3-LS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.

Frog Life Cycle MD NGSS 3-LS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.

Environmental Change MD NGSS 3-LS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Construct an argument that some animals form groups that help members survive.

Life Cycles MD NGSS 3-LS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Construct an argument that some animals form groups that help members survive.

Ecosystem Dynamics MD NGSS 3-LS3-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.

Selecting Traits MD NGSS 3-LS3-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.

Heredity and Traits MD NGSS 3-LS3-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

 Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.

Selecting Traits MD NGSS 3-LS3-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Use evidence to support the explanation that traits can be influenced by the environment.

Ecosystem Dynamics MD NGSS 3-LS3-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Use evidence to support the explanation that traits can be influenced by the environment.

Heredity and Traits MD NGSS 3-LS3-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

 Use evidence to support the explanation that traits can be influenced by the environment.

Changing Earth's Surface MD NGSS 3-LS4-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.

Fossil Organisms and their Environment MD NGSS 3-LS4-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.

Ecosystem Dynamics MD NGSS 3-LS4-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.

Heredity and Traits MD NGSS 3-LS4-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.

Selecting Traits MD NGSS 3-LS4-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.

Energy from the Sun MD NGSS 3-LS4-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

Fossil Organisms and their Environment MD NGSS 3-LS4-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

Ecosystem Dynamics MD NGSS 3-LS4-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

Environmental Change MD NGSS 3-LS4-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

Selecting Traits MD NGSS 3-LS4-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

Selecting Traits MD NGSS 3-LS4-4 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

 Make a claim about the merit of a solution to a problem caused when the environment changes and the type of plants and animals that live there may change.

Environmental Change MD NGSS 3-LS4-4 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make a claim about the merit of a solution to a problem caused when the environment changes and the type of plants and animals that live there may change.

Forces and Levers MD NGSS 3-PS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.
Comparing Forces MD NGSS 3-PS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Energy Transfer and Levers MD NGSS 3-PS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Engineering Launchers MD NGSS 3-PS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Balanced vs. Unbalanced Forces MD NGSS 3-PS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Windmill Forces MD NGSS 3-PS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Patterns in Motion MD NGSS 3-PS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion.

Forces and Materials MD NGSS 3-PS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

 Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Engineering Skyscrapers MD NGSS 3-PS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Energy and Collisions MD NGSS 3-PS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Motion in the Solar System MD NGSS 3-PS2-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion.

Static Charge MD NGSS 3-PS2-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

Current Electricity MD NGSS 3-PS2-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

Magnets and Motors MD NGSS 3-PS2-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

Magnets and Magnetic Fields MD NGSS 3-PS2-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

Engineering Pick-and-Place Devices MD NGSS 3-PS2-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

Engineering Pick-and-Place Devices MD NGSS 3-PS2-4 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Define a simple design problem that can be solved by applying scientific ideas about magnets.

Changing Earth's Surface MD NGSS 4-ESS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.

Weathering Rocks MD NGSS 4-ESS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time. *In this unit, students focus on the role of weathering in erosion, deposition, and Earth’s changing landscape.

Plate Tectonics and Landform Patterns MD NGSS 4-ESS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.

Water Erosion MD NGSS 4-ESS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.

Flood Control Engineering MD NGSS 4-ESS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.

Water Erosion MD NGSS 4-ESS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.

Weathering Rocks MD NGSS 4-ESS2-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.

Plate Tectonics and Landform Patterns MD NGSS 4-ESS2-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Analyze and interpret data from maps to describe patterns of Earth’s features.

Earth's Surface Features MD NGSS 4-ESS2-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Analyze and interpret data from maps to describe patterns of Earth’s features.  how different kinds of rock are mechanically weathered, analyzing how the sediment caused by the weathering can then be eroded. *In this unit, students focus on patterns in the locations of volcanoes and earthquakes.

Water Erosion MD NGSS 4-ESS3-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.

Changing Earth's Surface MD NGSS 4-ESS3-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.

Hydroelectric Dams and the Environment MD NGSS 4-ESS3-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.

Flood Control Engineering MD NGSS 4-ESS3-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.

Engineering Permeable Concrete MD NGSS 4-ESS3-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.

Plant and Animal Cells MD NGSS 4-LS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Plant Growth MD NGSS 4-LS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Heredity and Traits MD NGSS 4-LS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Plant Growth and Acid Rain MD NGSS 4-LS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

 Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Plant Structures MD NGSS 4-LS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Selecting Traits MD NGSS 4-LS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Energy from the Sun MD NGSS 4-LS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Frog Life Cycle MD NGSS 4-LS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Mealworm Senses MD NGSS 4-LS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Mealworm Senses MD NGSS 4-LS1-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways.

Patterns in Motion MD NGSS 4-PS3-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Use evidence to construct an explanation relating the speed of an object to the energy of that object. *Students are introduced to the relationship between energy and speed in this unit.

Energy and Collisions MD NGSS 4-PS3-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. *In this unit, students are introduced to the concept of patterns caused by the relative motions of the sun, moon, and Earth.

Waves and Energy MD NGSS 4-PS3-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Pitch and Volume MD NGSS 4-PS3-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Engineering Information Transfer MD NGSS 4-PS3-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Engineering Sound Barriers MD NGSS 4-PS3-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Engineering Library Scopes MD NGSS 4-PS3-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Energy Transfer and Levers MD NGSS 4-PS3-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Engineering Launchers MD NGSS 4-PS3-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Current Electricity MD NGSS 4-PS3-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Engineering Electric Cars MD NGSS 4-PS3-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Friction and Motion MD NGSS 4-PS3-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Engineering Roller Coasters MD NGSS 4-PS3-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Electrical Currents and Circuits MD NGSS 4-PS3-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Engineering Water Prisms MD NGSS 4-PS3-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Windmill Forces MD NGSS 4-PS3-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.*Students are introduced to energy transfer in this unit by focusing on moving substances. They will explore other forms of energy transfer in later units. 

Forces and Levers MD NGSS 4-PS3-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Magnets and Motors MD NGSS 4-PS3-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Sound Energy MD NGSS 4-PS3-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Sound Energy and Materials MD NGSS 4-PS3-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Sound Energy and Mediums MD NGSS 4-PS3-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Engineering Hearing Toys MD NGSS 4-PS3-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Energy and Collisions MD NGSS 4-PS3-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Ask questions and predict outcomes about the changes in energy that occur when objects collide.

Engineering Electric Cars MD NGSS 4-PS3-4 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

Engineering Information Transfer MD NGSS 4-PS3-4 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

Engineering Roller Coasters MD NGSS 4-PS3-4 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another. 

Electrical Currents and Circuits MD NGSS 4-PS3-4 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

Engineering Launchers MD NGSS 4-PS3-4 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

Magnets and Motors MD NGSS 4-PS3-4 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

Waves and Energy MD NGSS 4-PS4-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move.

Sound Energy MD NGSS 4-PS4-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move.

Engineering Information Transfer MD NGSS 4-PS4-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.

Engineering Library Scopes MD NGSS 4-PS4-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.

Engineering Water Prisms MD NGSS 4-PS4-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.

Engineering Information Transfer MD NGSS 4-PS4-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Generate and compare multiple solutions that use patterns to transfer information.

Motion in the Solar System MD NGSS 5-ESS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Support an argument that the apparent brightness of the sun and stars is due to their relative distances from Earth. 

Scaling the Sun Earth Moon System MD NGSS 5-ESS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Support an argument that the apparent brightness of the sun and stars is due to their relative distances from Earth.

Balanced vs. Unbalanced Forces MD NGSS 5-ESS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Support an argument that the apparent brightness of the sun and stars is due to their relative distances from Earth.

Patterns MD NGSS 5-ESS1-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.

Balanced vs. Unbalanced Forces MD NGSS 5-ESS1-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. *In this unit, students are introduced to the concept of patterns caused by the relative motions of the sun, moon, and Earth.

Heat and Evaporation MD NGSS 5-ESS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Earth Materials and Water Flow MD NGSS 5-ESS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Weathering Rocks MD NGSS 5-ESS2-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Earth's Water MD NGSS 5-ESS2-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Earth's Interacting Systems MD NGSS 5-ESS2-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Fossil Organisms and their Environment MD NGSS 5-ESS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

 Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Energy from the Sun MD NGSS 5-ESS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Environmental Change MD NGSS 5-ESS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Heat and Evaporation MD NGSS 5-ESS2-2 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.

Earth Materials and Water Flow MD NGSS 5-ESS2-2 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.

Earth's Water MD NGSS 5-ESS2-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.

Engineering Filtration Devices MD NGSS 5-ESS3-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.

Engineering Library Scopes MD NGSS 5-ESS3-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.

Hydroelectric Dams and the Environment MD NGSS 5-ESS3-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.

Plant Growth MD NGSS 5-LS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Support an argument that plants get the materials they need for growth chiefly from air and water.

Plant Growth and Acid Rain MD NGSS 5-LS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Support an argument that plants get the materials they need for growth chiefly from air and water.

Food Webs MD NGSS 5-LS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Support an argument that plants get the materials they need for growth chiefly from air and water.

Plant Structures MD NGSS 5-LS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Support an argument that plants get the materials they need for growth chiefly from air and water.

Energy from the Sun MD NGSS 5-LS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Support an argument that plants get the materials they need for growth chiefly from air and water.

Energy and Matter in Food Webs MD NGSS 5-LS2-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

Ecosystem Dynamics MD NGSS 5-LS2-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

Decomposition MD NGSS 5-LS2-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

Energy from the Sun MD NGSS 5-LS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

Fossil Organisms and their Environment MD NGSS 5-LS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

Waves and Energy MD NGSS 5-PS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Develop a model to describe that matter is made of particles too small to be seen.

Pitch and Volume MD NGSS 5-PS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Develop a model to describe that matter is made of particles too small to be seen.

Conservation of Matter MD NGSS 5-PS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model to describe that matter is made of particles too small to be seen.

Structure of Matter MD NGSS 5-PS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop a model to describe that matter is made of particles too small to be seen.

Properties of Matter MD NGSS 5-PS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Develop a model to describe that matter is made of particles too small to be seen.

Engineering Sound Barriers MD NGSS 5-PS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

 Develop a model to describe that matter is made of particles too small to be seen.

Heat and Matter MD NGSS 5-PS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop a model to describe that matter is made of particles too small to be seen.

Sound Energy and Materials MD NGSS 5-PS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model to describe that matter is made of particles too small to be seen.

Electrical Currents and Circuits MD NGSS 5-PS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model to describe that matter is made of particles too small to be seen.

Current Electricity MD NGSS 5-PS1-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Develop a model to describe that matter is made of particles too small to be seen.

Sound Energy MD NGSS 5-PS1-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Develop a model to describe that matter is made of particles too small to be seen.

Static Charge MD NGSS 5-PS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop a model to describe that matter is made of particles too small to be seen.

Sound Energy and Mediums MD NGSS 5-PS1-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Develop a model to describe that matter is made of particles too small to be seen. 

Conservation of Matter MD NGSS 5-PS1-2 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved.

Pitch and Volume MD NGSS 5-PS1-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations and measurements to identify materials based on their properties.

Engineering Information Transfer MD NGSS 5-PS1-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations and measurements to identify materials based on their properties.

Plate Tectonics and Landform Patterns MD NGSS 5-PS1-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations and measurements to identify materials based on their properties.

Engineering Sound Barriers MD NGSS 5-PS1-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations and measurements to identify materials based on their properties.

Engineering Library Scopes MD NGSS 5-PS1-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations and measurements to identify materials based on their properties.

Magnets and Magnetic Fields MD NGSS 5-PS1-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations and measurements to identify materials based on their properties. 

Properties of Minerals MD NGSS 5-PS1-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations and measurements to identify materials based on their properties.

Electrical Currents and Circuits MD NGSS 5-PS1-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations and measurements to identify materials based on their properties.

Engineering Electric Cars MD NGSS 5-PS1-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Make observations and measurements to identify materials based on their properties.

Engineering Water Prisms MD NGSS 5-PS1-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations and measurements to identify materials based on their properties.

Current Electricity MD NGSS 5-PS1-3 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

 Make observations and measurements to identify materials based on their properties.

Magnets and Motors MD NGSS 5-PS1-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations and measurements to identify materials based on their properties.

Sound Energy and Materials MD NGSS 5-PS1-3 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Make observations and measurements to identify materials based on their properties.

Static Charge MD NGSS 5-PS1-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations and measurements to identify materials based on their properties. 

Engineering Pick-and-Place Devices MD NGSS 5-PS1-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations and measurements to identify materials based on their properties. 

Engineering Hearing Toys MD NGSS 5-PS1-3 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Make observations and measurements to identify materials based on their properties.

Conservation of Matter MD NGSS 5-PS1-4 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Conduct an investigation to determine whether the mixing of two or more substances results in new substances.

Water Erosion MD NGSS 5-PS1-4 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Conduct an investigation to determine whether the mixing of two or more substances results in new substances.

Weathering Rocks MD NGSS 5-PS1-4 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Conduct an investigation to determine whether the mixing of two or more substances results in new substances.

Motion in the Solar System MD NGSS 5-PS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Support an argument that the gravitational force exerted by Earth on objects is directed down.

Energy Transfer and Levers MD NGSS 5-PS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Support an argument that the gravitational force exerted by Earth on objects is directed down.

Balanced vs. Unbalanced Forces MD NGSS 5-PS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Support an argument that the gravitational force exerted by Earth on objects is directed down.

Engineering Roller Coasters MD NGSS 5-PS2-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Support an argument that the gravitational force exerted by Earth on objects is directed down.

Engineering Launchers MD NGSS 5-PS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Support an argument that the gravitational force exerted by Earth on objects is directed down.

Engineering Skyscrapers MD NGSS 5-PS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Support an argument that the gravitational force exerted by Earth on objects is directed down.

Scaling the Sun Earth Moon System MD NGSS 5-PS2-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Support an argument that the gravitational force exerted by Earth on objects is directed down.

Forces and Materials MD NGSS 5-PS2-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

 Support an argument that the gravitational force exerted by Earth on objects is directed down.

Forces and Levers MD NGSS 5-PS2-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4 Support an argument that the gravitational force exerted by Earth on objects is directed down.
Energy and Matter in Food Webs MD NGSS 5-PS3-1 [{id=111674358585, createdAt=1681899838675, updatedAt=1681899841076, 1='{type=string, value=5}'}] 5

Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun.

Energy from the Sun MD NGSS 5-PS3-1 [{id=111674358582, createdAt=1681899821720, updatedAt=1681899824999, 1='{type=string, value=3}'}] 3

Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun.

Food Webs MD NGSS 5-PS3-1 [{id=111674358584, createdAt=1681899835616, updatedAt=1681899838563, 1='{type=string, value=4}'}] 4

Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun.

Who Scientists Are MD NGSS K-2-ETS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Engineering Marble Movers MD NGSS K-2-ETS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Engineering Hand Pollinators MD NGSS K-2-ETS1-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Engineering Owl Shelters MD NGSS K-2-ETS1-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Engineering Boats MD NGSS K-2-ETS1-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Engineering Litter Collectors MD NGSS K-2-ETS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Engineering Dams MD NGSS K-2-ETS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Windy Weather MD NGSS K-2-ETS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool

Controlling Erosion MD NGSS K-2-ETS1-1 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Engineering Communication Devices MD NGSS K-2-ETS1-1 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.
Sunlight and Engineering MD NGSS K-2-ETS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Who Scientists Are MD NGSS K-2-ETS1-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Engineering Dams MD NGSS K-2-ETS1-2 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Engineering Hand Pollinators MD NGSS K-2-ETS1-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Engineering Marble Movers MD NGSS K-2-ETS1-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Engineering Owl Shelters MD NGSS K-2-ETS1-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Engineering Boats MD NGSS K-2-ETS1-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Engineering Litter Collectors MD NGSS K-2-ETS1-2 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Windy Weather MD NGSS K-2-ETS1-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

 Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem

Controlling Erosion MD NGSS K-2-ETS1-2 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Engineering Communication Devices MD NGSS K-2-ETS1-2 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Sunlight and Engineering MD NGSS K-2-ETS1-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Who Scientists Are MD NGSS K-2-ETS1-3 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

Controlling Erosion MD NGSS K-2-ETS1-3 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

Engineering Litter Collectors MD NGSS K-2-ETS1-3 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.

Engineering Hand Pollinators MD NGSS K-2-ETS1-3 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.

Engineering Marble Movers MD NGSS K-2-ETS1-3 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

Engineering Owl Shelters MD NGSS K-2-ETS1-3 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.

Engineering Boats MD NGSS K-2-ETS1-3 [{id=111674358581, createdAt=1681899819948, updatedAt=1681899821915, 1='{type=string, value=2}'}] 2

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.

Engineering Dams MD NGSS K-2-ETS1-3 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.

Engineering Communication Devices MD NGSS K-2-ETS1-3 [{id=111674358580, createdAt=1681899818338, updatedAt=1681899820544, 1='{type=string, value=1}'}] 1 Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.
Sunlight and Engineering MD NGSS K-2-ETS1-3 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

Who Scientists Are MD NGSS K-ESS2-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use and share observations of local weather conditions to describe patterns over time.

Weather Patterns MD NGSS K-ESS2-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use and share observations of local weather conditions to describe patterns over time.

Windy Weather MD NGSS K-ESS2-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use and share observations of local weather conditions to describe patterns over time

Heat and Water MD NGSS K-ESS2-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use and share observations of local weather conditions to describe patterns over time.

The Water Cycle MD NGSS K-ESS2-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use and share observations of local weather conditions to describe patterns over time.

Weather and Seasons MD NGSS K-ESS2-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use and share observations of local weather conditions to describe patterns over time.

Growing Plants MD NGSS K-ESS2-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs.

Living Things in Their Habitat MD NGSS K-ESS3-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live

Animal Habitats MD NGSS K-ESS3-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live

Who Scientists Are MD NGSS K-ESS3-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.

Extreme Weather MD NGSS K-ESS3-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.

Windy Weather MD NGSS K-ESS3-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.

Human Shelter MD NGSS K-ESS3-3 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.

Earth and Human Activity MD NGSS K-ESS3-3 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.

Living Things in Their Habitat MD NGSS K-LS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Living, Nonliving, and Once-Living MD NGSS K-LS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Growing Plants MD NGSS K-LS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Animal Habitats MD NGSS K-LS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Parts of Plants MD NGSS K-LS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Germinating Seeds MD NGSS K-LS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Characteristics of Living Things MD NGSS K-LS1-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Pushes and Pulls MD NGSS K-PS2-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.

Forces and Motion MD NGSS K-PS2-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.

Friction and Motion MD NGSS K-PS2-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.

Engineering Marble Movers MD NGSS K-PS2-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.

Who Scientists Are MD NGSS K-PS3-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Make observations to determine the effect of sunlight on Earth’s surface

Weather Patterns MD NGSS K-PS3-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Make observations to determine the effect of sunlight on Earth’s surface.

Weather and Seasons MD NGSS K-PS3-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Make observations to determine the effect of sunlight on Earth’s surface.

The Water Cycle MD NGSS K-PS3-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Make observations to determine the effect of sunlight on Earth’s surface

Sunlight and Temperature MD NGSS K-PS3-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Make observations to determine the effect of sunlight on Earth’s surface

Sun and Shade MD NGSS K-PS3-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Make observations to determine the effect of sunlight on Earth’s surface

Color and Temperature MD NGSS K-PS3-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Make observations to determine the effect of sunlight on Earth’s surface

Sunlight and Engineering MD NGSS K-PS3-1 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Make observations to determine the effect of sunlight on Earth’s surface

Who Scientists Are MD NGSS K-PS3-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use tools and materials provided to design and build a structure that will reduce the warming effect of sunlight on Earth’s surface.

Sunlight and Engineering MD NGSS K-PS3-2 [{id=111674358579, createdAt=1681899815574, updatedAt=1681899818274, 1='{type=string, value=K}'}] K

Use tools and materials provided to design and build a structure that will reduce the warming effect of sunlight on Earth’s surface.

Sun Angle and Temperature MD NGSS MS-ESS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons. 
Sun-Earth-Moon System MD NGSS MS-ESS1-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop and use a model of the Earth-Sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons

Climate Analysis MD NGSS MS-ESS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 Develop and use a model of the Earth-Sun-moon system to explain the cyclical patterns of lunar phases, eclipses of the sun and moon, and seasons.
Earth-Sun-Moon System MD NGSS MS-ESS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons.
Sun-Earth-Moon System MD NGSS MS-ESS1-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.

Earth's Place in the Solar System MD NGSS MS-ESS1-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.
Earth's Place in the Solar System MD NGSS MS-ESS1-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8  Analyze and interpret data to determine scale properties of objects in the solar system.
Fossils and Tectonic Plate Motion MD NGSS MS-ESS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history.
Animal Diversity MD NGSS MS-ESS1-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history.

Earth's Geologic History MD NGSS MS-ESS1-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history.

Climate Analysis MD NGSS MS-ESS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history.
Groundwater Flow MD NGSS MS-ESS2-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.

The Rock Cycle MD NGSS MS-ESS2-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.

Earth Materials MD NGSS MS-ESS2-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.

Glacier Motion MD NGSS MS-ESS2-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Use a model to illustrate that energy from Earth’s interior drives convection that cycles Earth’s crust, leading to melting, crystallization, weathering, and deformation of large rock formations, including generation of ocean seafloor at ridges, submergence of ocean seafloor at trenches, mountain building, and active volcanic chains.

Mass and Heat Transfer MD NGSS MS-ESS2-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.

The Rock Cycle MD NGSS MS-ESS2-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.

Weathering and Erosion MD NGSS MS-ESS2-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.

Earth Materials MD NGSS MS-ESS2-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.

Glacier Motion MD NGSS MS-ESS2-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying times and spatial scales.
Climate Analysis MD NGSS MS-ESS2-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7  Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying times and spatial scales.
Groundwater Flow MD NGSS MS-ESS2-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying times and spatial scales.

Fossils and Tectonic Plate Motion MD NGSS MS-ESS2-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.
Earth Materials MD NGSS MS-ESS2-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.

Earth's Geologic History MD NGSS MS-ESS2-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.

Groundwater Contamination MD NGSS MS-ESS2-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.

The Water Cycle and Earth's Systems MD NGSS MS-ESS2-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.

Sun Angle and Temperature MD NGSS MS-ESS2-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.
Convection and Weather MD NGSS MS-ESS2-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Collect data to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditions.

Ocean Salinity and Density MD NGSS MS-ESS2-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.

Weathering and Erosion MD NGSS MS-ESS2-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.

Glacier Motion MD NGSS MS-ESS2-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.
Groundwater Flow MD NGSS MS-ESS2-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.

Climate Analysis MD NGSS MS-ESS2-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.
The Water Cycle and Earth's Systems MD NGSS MS-ESS2-6 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

Ocean Salinity and Density MD NGSS MS-ESS2-6 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

Earth’s Climate MD NGSS MS-ESS2-6 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

Sun Angle and Temperature MD NGSS MS-ESS2-6 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.
Convection and Weather MD NGSS MS-ESS2-6 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

Groundwater Contamination MD NGSS MS-ESS3-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes.

Natural Resources MD NGSS MS-ESS3-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes.

Groundwater Flow MD NGSS MS-ESS3-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

Earthquake-Resistant Skyscrapers MD NGSS MS-ESS3-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

Groundwater Contamination MD NGSS MS-ESS3-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

Engineering Rain Harvesting Systems MD NGSS MS-ESS3-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

Engineering Water Filtration Devices MD NGSS MS-ESS3-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

Groundwater Contamination MD NGSS MS-ESS3-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems.

Greenhouse Effect MD NGSS MS-ESS3-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems.

Engineering Rain Harvesting Systems MD NGSS MS-ESS3-5 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

Climate Analysis MD NGSS MS-ESS3-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
Greenhouse Effect MD NGSS MS-ESS3-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Ask questions to clarify evidence of the factors that have caused the rise of global temperatures over the past.

Engineering Vehicles MD NGSS MS-ETS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Speakers MD NGSS MS-ETS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Meteoroid Shields MD NGSS MS-ETS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Engineering Chemical Cold Pack Reactions MD NGSS MS-ETS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Thermal Control MD NGSS MS-ETS1-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Seismograph MD NGSS MS-ETS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Greenhouses MD NGSS MS-ETS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Rain Harvesting Systems MD NGSS MS-ETS1-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Wind Turbines MD NGSS MS-ETS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Shoreline Barriers MD NGSS MS-ETS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Earthquake-Resistant Skyscrapers MD NGSS MS-ETS1-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Water Filtration Devices MD NGSS MS-ETS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Bridges MD NGSS MS-ETS1-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Engineering Wind Turbines MD NGSS MS-ETS1-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Vehicles MD NGSS MS-ETS1-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

 Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Meteoroid Shields MD NGSS MS-ETS1-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Engineering Greenhouses MD NGSS MS-ETS1-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Speakers MD NGSS MS-ETS1-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Thermal Control MD NGSS MS-ETS1-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Water Filtration Devices MD NGSS MS-ETS1-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Shoreline Barriers MD NGSS MS-ETS1-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Rain Harvesting Systems MD NGSS MS-ETS1-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Seismograph MD NGSS MS-ETS1-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Earthquake-Resistant Skyscrapers MD NGSS MS-ETS1-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Chemical Cold Pack Reactions MD NGSS MS-ETS1-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Bridges MD NGSS MS-ETS1-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Engineering Seismograph MD NGSS MS-ETS1-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Vehicles MD NGSS MS-ETS1-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Speakers MD NGSS MS-ETS1-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Meteoroid Shields MD NGSS MS-ETS1-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
Engineering Thermal Control MD NGSS MS-ETS1-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Greenhouses MD NGSS MS-ETS1-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Rain Harvesting Systems MD NGSS MS-ETS1-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Wind Turbines MD NGSS MS-ETS1-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Shoreline Barriers MD NGSS MS-ETS1-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Water Filtration Devices MD NGSS MS-ETS1-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Chemical Cold Pack Reactions MD NGSS MS-ETS1-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Earthquake-Resistant Skyscrapers MD NGSS MS-ETS1-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Bridges MD NGSS MS-ETS1-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Engineering Thermal Control MD NGSS MS-ETS1-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Engineering Meteoroid Shields MD NGSS MS-ETS1-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
Engineering Water Filtration Devices MD NGSS MS-ETS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Engineering Vehicles MD NGSS MS-ETS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Engineering Speakers MD NGSS MS-ETS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Engineering Chemical Cold Pack Reactions MD NGSS MS-ETS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Engineering Shoreline Barriers MD NGSS MS-ETS1-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Earthquake-Resistant Skyscrapers MD NGSS MS-ETS1-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Engineering Bridges MD NGSS MS-ETS1-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Engineering Greenhouses MD NGSS MS-ETS1-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

 Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Engineering Rain Harvesting Systems MD NGSS MS-ETS1-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Engineering Seismograph MD NGSS MS-ETS1-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Engineering Wind Turbines MD NGSS MS-ETS1-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Observing and Comparing Cells MD NGSS MS-LS1-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

Organ System Structure and Function MD NGSS MS-LS1-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

Cell Structure and Function MD NGSS MS-LS1-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

Comparing Cells MD NGSS MS-LS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.
Living Things: Prokaryotes and Eukaryotes MD NGSS MS-LS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

Mitosis in Animal and Plant Cells MD NGSS MS-LS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

Sucrose and Heart Rate MD NGSS MS-LS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8  Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.
Animal and Plant Cell Structure and Function MD NGSS MS-LS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

Cellular Respiration MD NGSS MS-LS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells
The Cell Membrane MD NGSS MS-LS1-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

Observing and Comparing Cells MD NGSS MS-LS1-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

Animal and Plant Cell Structure and Function MD NGSS MS-LS1-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

Photosynthesis MD NGSS MS-LS1-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

Comparing Cells MD NGSS MS-LS1-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.
Organ System Structure and Function MD NGSS MS-LS1-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

Cell Structure and Function MD NGSS MS-LS1-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

Sucrose and Heart Rate MD NGSS MS-LS1-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.
The Nervous System and Senses MD NGSS MS-LS1-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

Reproduction and Fungi Structures MD NGSS MS-LS1-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. 

Chromosomes and Mutations MD NGSS MS-LS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Reproduction MD NGSS MS-LS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Rocky Shore Ecosystems MD NGSS MS-LS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

The Cell Membrane MD NGSS MS-LS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. 

Natural Selection MD NGSS MS-LS1-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Use arguments based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Animal and Plant Cell Structure and Function MD NGSS MS-LS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Forest Food Web MD NGSS MS-LS1-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Sea Star Structures MD NGSS MS-LS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Intertidal Zone Temperature Change MD NGSS MS-LS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Life on Earth MD NGSS MS-LS1-5 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

Natural Selection MD NGSS MS-LS1-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. 

Photosynthesis MD NGSS MS-LS1-5 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

DNA and Proteins MD NGSS MS-LS1-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. 

MD NGSS MS-LS1-5 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

Rocky Shore Ecosystems MD NGSS MS-LS1-6 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

Photosynthesis and Oil Spills MD NGSS MS-LS1-6 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

Food and Energy MD NGSS MS-LS1-6 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

Photosynthesis MD NGSS MS-LS1-6 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms

Comparing Cells MD NGSS MS-LS1-6 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8  Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.
Food and Energy MD NGSS MS-LS1-7 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.

Cellular Respiration MD NGSS MS-LS1-7 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.
Sucrose and Heart Rate MD NGSS MS-LS1-8 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.

The Nervous System and Senses MD NGSS MS-LS1-8 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Gather and synthesize information that sensory receptors respond to stimul

Rocky Shore Ecosystems MD NGSS MS-LS2-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

Food Webs MD NGSS MS-LS2-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

MD NGSS MS-LS2-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

Food Webs MD NGSS MS-LS2-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.

Rocky Shore Ecosystems MD NGSS MS-LS2-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.

Rocky Shore Ecosystems MD NGSS MS-LS2-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

Photosynthesis and Oil Spills MD NGSS MS-LS2-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

Food Webs MD NGSS MS-LS2-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

Forest Food Web MD NGSS MS-LS2-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

Photosynthesis and Oil Spills MD NGSS MS-LS2-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

Food Webs MD NGSS MS-LS2-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

Rocky Shore Ecosystems MD NGSS MS-LS2-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

MD NGSS MS-LS2-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

Engineering Water Filtration Devices MD NGSS MS-LS2-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

Engineering Shoreline Barriers MD NGSS MS-LS2-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

Chromosomes and Mutations MD NGSS MS-LS3-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

Animal Diversity MD NGSS MS-LS3-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

Natural Selection MD NGSS MS-LS3-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

DNA and Mutations MD NGSS MS-LS3-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

Heredity and Traits MD NGSS MS-LS3-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

Reproduction MD NGSS MS-LS3-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop and use a model to show why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Inheritance and Variation of Traits MD NGSS MS-LS3-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Heredity and Traits MD NGSS MS-LS3-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Animal Diversity MD NGSS MS-LS3-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Reproduction MD NGSS MS-LS3-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Reproduction and Fungi Structures MD NGSS MS-LS3-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Animal Diversity MD NGSS MS-LS4-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.

Comparing Cells MD NGSS MS-LS4-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.

Life on Earth MD NGSS MS-LS4-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.

Fossils and Tectonic Plate Motion MD NGSS MS-LS4-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.
Life on Earth MD NGSS MS-LS4-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

Animal Diversity MD NGSS MS-LS4-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

Comparing Cells MD NGSS MS-LS4-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

Animal Diversity MD NGSS MS-LS4-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.

Life on Earth MD NGSS MS-LS4-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.

DNA and Mutations MD NGSS MS-LS4-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.

Natural Selection MD NGSS MS-LS4-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.

Natural Selection MD NGSS MS-LS4-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.

Heredity and Traits MD NGSS MS-LS4-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.

Natural Selection MD NGSS MS-LS4-6 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.

Atoms MD NGSS MS-PS1-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop models to describe the atomic composition of simple molecules and extended structures

Molecules MD NGSS MS-PS1-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop models to describe the atomic composition of simple molecules and extended structures

Natural Resources MD NGSS MS-PS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop models to describe the atomic composition of simple molecules and extended structures.

Thermal Energy and Particle Motion MD NGSS MS-PS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop models to describe the atomic composition of simple molecules and extended structures.

Chromosomes and Mutations MD NGSS MS-PS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop models to describe the atomic composition of simple molecules and extended structures.

The Rock Cycle MD NGSS MS-PS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop models to describe the atomic composition of simple molecules and extended structures.

Chemical Reactions MD NGSS MS-PS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop models to describe the atomic composition of simple molecules and extended structures.
Polymer Structure and Function MD NGSS MS-PS1-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop models to describe the atomic composition of simple molecules and extended structures.
Renewable Energy MD NGSS MS-PS1-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7  Develop models to describe the atomic composition of simple molecules and extended structures.
Molecules MD NGSS MS-PS1-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Chemical Reactions MD NGSS MS-PS1-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Chemical Reactions MD NGSS MS-PS1-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Renewable Energy MD NGSS MS-PS1-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7 Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.
Natural Resources MD NGSS MS-PS1-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

Mass and Motion MD NGSS MS-PS1-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

Engineering Chemical Cold Pack Reactions MD NGSS MS-PS1-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

Chemical Reactions MD NGSS MS-PS1-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

Polymer Structure and Function MD NGSS MS-PS1-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.
Earthquake-Resistant Skyscrapers MD NGSS MS-PS1-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

Mass and Heat Transfer MD NGSS MS-PS1-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

Chemical Reactions MD NGSS MS-PS1-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. 
Molecules MD NGSS MS-PS1-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

Chemical Reactions MD NGSS MS-PS1-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Chemical Reactions MD NGSS MS-PS1-5 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Chemical Reactions MD NGSS MS-PS1-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

The Rock Cycle MD NGSS MS-PS1-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Renewable Energy MD NGSS MS-PS1-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7  Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.
Molecules MD NGSS MS-PS1-5 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Engineering Chemical Cold Pack Reactions MD NGSS MS-PS1-6 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.

Mass and Motion MD NGSS MS-PS2-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects.

Chemical Reactions MD NGSS MS-PS2-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Engineering Meteoroid Shields MD NGSS MS-PS2-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects.
Engineering Vehicles MD NGSS MS-PS2-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.

Mass and Motion MD NGSS MS-PS2-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.

Engineering Meteoroid Shields MD NGSS MS-PS2-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.
Engineering Seismograph MD NGSS MS-PS2-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.

Engineering Wind Turbines MD NGSS MS-PS2-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object. 

Forces and Motion MD NGSS MS-PS2-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.

Engineering Speakers MD NGSS MS-PS2-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

Electric and Magnetic Interactions MD NGSS MS-PS2-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

Magnetism and Energy MD NGSS MS-PS2-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

Engineering Meteoroid Shields MD NGSS MS-PS2-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.
Sun-Earth-Moon System MD NGSS MS-PS2-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

Glacier Motion MD NGSS MS-PS2-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Use evidence to support the claim that gravitational forces between objects are attractive and are only noticeable when one or both of the objects have a very large mass.

Sea Star Structures MD NGSS MS-PS2-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

Earth-Sun-Moon System MD NGSS MS-PS2-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.
Earth's Place in the Solar System MD NGSS MS-PS2-4 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.
Energy Transformation MD NGSS MS-PS2-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

Engineering Speakers MD NGSS MS-PS2-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

Electric and Magnetic Interactions MD NGSS MS-PS2-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

Magnetism and Energy MD NGSS MS-PS2-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

Mass, Speed, and Kinetic Energy MD NGSS MS-PS3-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

Mass and Motion MD NGSS MS-PS3-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

Mass and Energy Transfer MD NGSS MS-PS3-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. 

Engineering Speakers MD NGSS MS-PS3-2 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

Magnetism and Energy MD NGSS MS-PS3-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

Energy Transformation MD NGSS MS-PS3-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

Engineering Thermal Control MD NGSS MS-PS3-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

Mass and Heat Transfer MD NGSS MS-PS3-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

Engineering Greenhouses MD NGSS MS-PS3-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

Chemical Reactions MD NGSS MS-PS3-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. 

Thermal Energy and Particle Motion MD NGSS MS-PS3-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

Chemical Reactions MD NGSS MS-PS3-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. *In this unit, students focus on the relationship between the energy transferred and the change in the average kinetic energy of the substance’s particles. They will incorporate the other aspects of the standard in later units.

Chemical Reactions MD NGSS MS-PS3-4 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

Mass and Heat Transfer MD NGSS MS-PS3-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

Intertidal Zone Temperature Change MD NGSS MS-PS3-4 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

Engineering Vehicles MD NGSS MS-PS3-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Thermal Energy and Particle Motion MD NGSS MS-PS3-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Chemical Reactions MD NGSS MS-PS3-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Chemical Reactions MD NGSS MS-PS3-5 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Engineering Thermal Control MD NGSS MS-PS3-5 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Mass, Speed, and Kinetic Energy MD NGSS MS-PS3-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Chemical Reactions MD NGSS MS-PS3-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Polymer Structure and Function MD NGSS MS-PS3-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8 Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Mass and Heat Transfer MD NGSS MS-PS3-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Electric and Magnetic Interactions MD NGSS MS-PS3-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Engineering Wind Turbines MD NGSS MS-PS3-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Magnetism and Energy MD NGSS MS-PS3-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Intertidal Zone Temperature Change MD NGSS MS-PS3-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Forces and Motion MD NGSS MS-PS3-5 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Mass and Motion MD NGSS MS-PS3-5 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Energy Transformation MD NGSS MS-PS3-5 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Mass and Energy Transfer MD NGSS MS-PS3-5 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Thermal Energy and Particle Motion MD NGSS MS-PS4-1 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

Wave Properties and Signals MD NGSS MS-PS4-1 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

Engineering Seismograph MD NGSS MS-PS4-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

Mechanical Waves and Energy MD NGSS MS-PS4-1 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

Light and Information Transfer MD NGSS MS-PS4-2 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

Wave Properties and Signals MD NGSS MS-PS4-2 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

Communication Systems MD NGSS MS-PS4-3 [{id=111674358587, createdAt=1681899844234, updatedAt=1681899846599, 1='{type=string, value=7}'}] 7

Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

Wave Properties and Signals MD NGSS MS-PS4-3 [{id=111674358586, createdAt=1681899841084, updatedAt=1681899843589, 1='{type=string, value=6}'}] 6

 Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

Light and Information Transfer MD NGSS MS-PS4-3 [{id=111674358588, createdAt=1681899846200, updatedAt=1681899848547, 1='{type=string, value=8}'}] 8

Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

New call-to-action

Learn How to Get Started Using KnowAtom in Your School

Maryland Science Standards (NGSS) | KnowAtom Lesson Alignment Guide

Phenomena Based Lessons Aligned to NGSS.

Science Lesson : Earth and Moon Patterns
State: MD
Standards: NGSS
Performance Expectation:

Use observations of the sun, moon, and stars to describe patterns that can be predicted.

State: MD
Standards: NGSS
Performance Expectation:

Use observations of the sun, moon, and stars to describe patterns that can be predicted.

State: MD
Standards: NGSS
Performance Expectation:

Make observations at different times of year to relate the amount of daylight to the time of year.

Science Lesson : Seasonal Patterns
State: MD
Standards: NGSS
Performance Expectation:

Make observations at different times of year to relate the amount of daylight to the time of year.

Science Lesson : Ant Behavior and Food
State: MD
Standards: NGSS
Performance Expectation:

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

State: MD
Standards: NGSS
Performance Expectation:

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Science Lesson : Plant Structures
State: MD
Standards: NGSS
Performance Expectation:

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

State: MD
Standards: NGSS
Performance Expectation:

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

State: MD
Standards: NGSS
Performance Expectation:

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

State: MD
Standards: NGSS
Performance Expectation:

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

Science Lesson : Engineering Dams
State: MD
Standards: NGSS
Performance Expectation:

Use materials to design a solution to a human problem by mimicking how plants and/or animals use their external parts to help them survive, grow, and meet their needs.

State: MD
Standards: NGSS
Performance Expectation:

Read texts and use media to determine patterns in behavior of parents and offspring that help offspring survive.

State: MD
Standards: NGSS
Performance Expectation:

Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents.

Science Lesson : Plant Structures
State: MD
Standards: NGSS
Performance Expectation:

Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents.

State: MD
Standards: NGSS
Performance Expectation:

Make observations to construct an evidence-based account that young plants and animals are like, but not exactly like, their parents. *Students focus on animals in this unit.

Science Lesson : Sounds and Senses
State: MD
Standards: NGSS
Performance Expectation: Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate.
State: MD
Standards: NGSS
Performance Expectation: Use tools and materials to design and build a device that uses light or sound to solve the problem of communicating over a distance.
State: MD
Standards: NGSS
Performance Expectation:

Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate.

Science Lesson : Light
State: MD
Standards: NGSS
Performance Expectation:

Make observations to construct an evidence-based account that objects in darkness can be seen only when illuminated.

Science Lesson : Materials and Light
State: MD
Standards: NGSS
Performance Expectation:

Plan and conduct investigations to determine the effect of placing objects made with different materials in the path of a beam of light.

Science Lesson : Earth Events
State: MD
Standards: NGSS
Performance Expectation:

Use information from several sources to provide evidence that Earth events can occur quickly or slowly.

Science Lesson : Controlling Erosion
State: MD
Standards: NGSS
Performance Expectation:

Compare multiple solutions designed to slow or prevent wind or water from changing the shape of the land.

Science Lesson : Mapping Land and Water
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to represent the shapes and kinds of land and bodies of water in an area.

Science Lesson : Water Flow
State: MD
Standards: NGSS
Performance Expectation:

Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot.

Science Lesson : How Plants Grow
State: MD
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to determine if plants need sunlight and water to grow.

Science Lesson : Butterfly Life Cycle
State: MD
Standards: NGSS
Performance Expectation:

Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.

Science Lesson : Flowers
State: MD
Standards: NGSS
Performance Expectation:

Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.

State: MD
Standards: NGSS
Performance Expectation:

Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.

State: MD
Standards: NGSS
Performance Expectation:

Develop a simple model that mimics the function of an animal in dispersing seeds or pollinating plants.

State: MD
Standards: NGSS
Performance Expectation:

Make observations of plants and animals to compare the diversity of life in different habitats.

Science Lesson : Habitats
State: MD
Standards: NGSS
Performance Expectation:

Make observations of plants and animals to compare the diversity of life in different habitats.

Science Lesson : Matter and Properties
State: MD
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties.

Science Lesson : Property of Materials
State: MD
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties.

State: MD
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to describe and classify different kinds of materials by their observable properties. 

Science Lesson : Floating and Sinking
State: MD
Standards: NGSS
Performance Expectation:

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

Science Lesson : Engineering Boats
State: MD
Standards: NGSS
Performance Expectation:

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

State: MD
Standards: NGSS
Performance Expectation:

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

Science Lesson : Action-Reaction Forces
State: MD
Standards: NGSS
Performance Expectation:

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

Science Lesson : Friction
State: MD
Standards: NGSS
Performance Expectation:

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

Science Lesson : Property of Materials
State: MD
Standards: NGSS
Performance Expectation:

Analyze data obtained from testing different materials to determine which materials have the properties that are best suited for an intended purpose.

State: MD
Standards: NGSS
Performance Expectation:

Make observations to construct an evidence-based account of how an object made of a small set of pieces can be disassembled and made into a new object.

Science Lesson : Matter and Properties
State: MD
Standards: NGSS
Performance Expectation:

Construct an argument with evidence that some changes caused by heating or cooling can be reversed and some cannot.

Science Lesson : Water Flow
State: MD
Standards: NGSS
Performance Expectation:

Obtain information to identify where water is found on Earth and that it can be solid or liquid.

State: MD
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or want that includes specified criteria for success and constraints on materials, time, or cost.

State: MD
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

State: MD
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

State: MD
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

State: MD
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

State: MD
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

State: MD
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Science Lesson : Engineering Launchers
State: MD
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

State: MD
Standards: NGSS
Performance Expectation:

 Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

Science Lesson : Engineering Skyscrapers
State: MD
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

State: MD
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

State: MD
Standards: NGSS
Performance Expectation:

Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

State: MD
Standards: NGSS
Performance Expectation:

 Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost.

State: MD
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem, based on how well each is likely to meet the criteria and constraints of the problem.

State: MD
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

State: MD
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

State: MD
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

State: MD
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

State: MD
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

State: MD
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

State: MD
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Science Lesson : Engineering Launchers
State: MD
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

Science Lesson : Engineering Skyscrapers
State: MD
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

State: MD
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

State: MD
Standards: NGSS
Performance Expectation:

 Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

State: MD
Standards: NGSS
Performance Expectation:

Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem.

State: MD
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

State: MD
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

State: MD
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

State: MD
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

State: MD
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

State: MD
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

State: MD
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

State: MD
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Science Lesson : Engineering Launchers
State: MD
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Science Lesson : Engineering Skyscrapers
State: MD
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved. 

State: MD
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

State: MD
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

State: MD
Standards: NGSS
Performance Expectation:

Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.

Science Lesson : Weather and Climate
State: MD
Standards: NGSS
Performance Expectation:

Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.

State: MD
Standards: NGSS
Performance Expectation:

Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.

State: MD
Standards: NGSS
Performance Expectation:

Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.

Science Lesson : Heat and Evaporation
State: MD
Standards: NGSS
Performance Expectation:

Obtain and combine information to describe climates in different regions of the world.

State: MD
Standards: NGSS
Performance Expectation:

Obtain and combine information to describe climates in different regions of the world.

Science Lesson : Weather and Climate
State: MD
Standards: NGSS
Performance Expectation:

Obtain and combine information to describe climates in different regions of the world.

Science Lesson : Energy from the Sun
State: MD
Standards: NGSS
Performance Expectation:

Obtain and combine information to describe climates in different regions of the world. 

State: MD
Standards: NGSS
Performance Expectation:

Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.

State: MD
Standards: NGSS
Performance Expectation:

Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard.

State: MD
Standards: NGSS
Performance Expectation:

Obtain and combine information to describe climates in different regions of the world.

State: MD
Standards: NGSS
Performance Expectation:

Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.

Science Lesson : Life Cycles
State: MD
Standards: NGSS
Performance Expectation:

Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.

Science Lesson : Frog Life Cycle
State: MD
Standards: NGSS
Performance Expectation:

Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.

Science Lesson : Environmental Change
State: MD
Standards: NGSS
Performance Expectation:

Construct an argument that some animals form groups that help members survive.

Science Lesson : Life Cycles
State: MD
Standards: NGSS
Performance Expectation:

Construct an argument that some animals form groups that help members survive.

Science Lesson : Ecosystem Dynamics
State: MD
Standards: NGSS
Performance Expectation:

Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.

Science Lesson : Selecting Traits
State: MD
Standards: NGSS
Performance Expectation:

Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.

Science Lesson : Heredity and Traits
State: MD
Standards: NGSS
Performance Expectation:

 Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms.

Science Lesson : Selecting Traits
State: MD
Standards: NGSS
Performance Expectation:

Use evidence to support the explanation that traits can be influenced by the environment.

Science Lesson : Ecosystem Dynamics
State: MD
Standards: NGSS
Performance Expectation:

Use evidence to support the explanation that traits can be influenced by the environment.

Science Lesson : Heredity and Traits
State: MD
Standards: NGSS
Performance Expectation:

 Use evidence to support the explanation that traits can be influenced by the environment.

State: MD
Standards: NGSS
Performance Expectation:

Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.

State: MD
Standards: NGSS
Performance Expectation:

Analyze and interpret data from fossils to provide evidence of the organisms and the environments in which they lived long ago.

Science Lesson : Ecosystem Dynamics
State: MD
Standards: NGSS
Performance Expectation:

Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.

Science Lesson : Heredity and Traits
State: MD
Standards: NGSS
Performance Expectation:

Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.

Science Lesson : Selecting Traits
State: MD
Standards: NGSS
Performance Expectation:

Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.

Science Lesson : Energy from the Sun
State: MD
Standards: NGSS
Performance Expectation:

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

State: MD
Standards: NGSS
Performance Expectation:

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

Science Lesson : Ecosystem Dynamics
State: MD
Standards: NGSS
Performance Expectation:

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

Science Lesson : Environmental Change
State: MD
Standards: NGSS
Performance Expectation:

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

Science Lesson : Selecting Traits
State: MD
Standards: NGSS
Performance Expectation:

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

Science Lesson : Selecting Traits
State: MD
Standards: NGSS
Performance Expectation:

 Make a claim about the merit of a solution to a problem caused when the environment changes and the type of plants and animals that live there may change.

Science Lesson : Environmental Change
State: MD
Standards: NGSS
Performance Expectation:

Make a claim about the merit of a solution to a problem caused when the environment changes and the type of plants and animals that live there may change.

Science Lesson : Forces and Levers
State: MD
Standards: NGSS
Performance Expectation: Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.
Science Lesson : Comparing Forces
State: MD
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

State: MD
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Science Lesson : Engineering Launchers
State: MD
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

State: MD
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Science Lesson : Windmill Forces
State: MD
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Science Lesson : Patterns in Motion
State: MD
Standards: NGSS
Performance Expectation:

Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion.

Science Lesson : Forces and Materials
State: MD
Standards: NGSS
Performance Expectation:

 Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Science Lesson : Engineering Skyscrapers
State: MD
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

Science Lesson : Energy and Collisions
State: MD
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object.

State: MD
Standards: NGSS
Performance Expectation:

Make observations and/or measurements of an object’s motion to provide evidence that a pattern can be used to predict future motion.

Science Lesson : Static Charge
State: MD
Standards: NGSS
Performance Expectation:

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

Science Lesson : Current Electricity
State: MD
Standards: NGSS
Performance Expectation:

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

Science Lesson : Magnets and Motors
State: MD
Standards: NGSS
Performance Expectation:

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

State: MD
Standards: NGSS
Performance Expectation:

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

State: MD
Standards: NGSS
Performance Expectation:

Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other.

State: MD
Standards: NGSS
Performance Expectation:

Define a simple design problem that can be solved by applying scientific ideas about magnets.

State: MD
Standards: NGSS
Performance Expectation:

Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.

Science Lesson : Weathering Rocks
State: MD
Standards: NGSS
Performance Expectation:

Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time. *In this unit, students focus on the role of weathering in erosion, deposition, and Earth’s changing landscape.

State: MD
Standards: NGSS
Performance Expectation:

Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.

Science Lesson : Water Erosion
State: MD
Standards: NGSS
Performance Expectation:

Identify evidence from patterns in rock formations and fossils in rock layers to support an explanation for changes in a landscape over time.

State: MD
Standards: NGSS
Performance Expectation:

Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.

Science Lesson : Water Erosion
State: MD
Standards: NGSS
Performance Expectation:

Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.

Science Lesson : Weathering Rocks
State: MD
Standards: NGSS
Performance Expectation:

Make observations and/or measurements to provide evidence of the effects of weathering or the rate of erosion by water, ice, wind, or vegetation.

State: MD
Standards: NGSS
Performance Expectation:

Analyze and interpret data from maps to describe patterns of Earth’s features.

State: MD
Standards: NGSS
Performance Expectation:

Analyze and interpret data from maps to describe patterns of Earth’s features.  how different kinds of rock are mechanically weathered, analyzing how the sediment caused by the weathering can then be eroded. *In this unit, students focus on patterns in the locations of volcanoes and earthquakes.

Science Lesson : Water Erosion
State: MD
Standards: NGSS
Performance Expectation:

Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.

State: MD
Standards: NGSS
Performance Expectation:

Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.

State: MD
Standards: NGSS
Performance Expectation:

Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.

State: MD
Standards: NGSS
Performance Expectation:

Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.

State: MD
Standards: NGSS
Performance Expectation:

Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans.

Science Lesson : Plant and Animal Cells
State: MD
Standards: NGSS
Performance Expectation:

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Science Lesson : Plant Growth
State: MD
Standards: NGSS
Performance Expectation:

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Science Lesson : Heredity and Traits
State: MD
Standards: NGSS
Performance Expectation:

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

State: MD
Standards: NGSS
Performance Expectation:

 Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Science Lesson : Plant Structures
State: MD
Standards: NGSS
Performance Expectation:

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Science Lesson : Selecting Traits
State: MD
Standards: NGSS
Performance Expectation:

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Science Lesson : Energy from the Sun
State: MD
Standards: NGSS
Performance Expectation:

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Science Lesson : Frog Life Cycle
State: MD
Standards: NGSS
Performance Expectation:

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Science Lesson : Mealworm Senses
State: MD
Standards: NGSS
Performance Expectation:

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, and reproduction.

Science Lesson : Mealworm Senses
State: MD
Standards: NGSS
Performance Expectation:

Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways.

Science Lesson : Patterns in Motion
State: MD
Standards: NGSS
Performance Expectation:

Use evidence to construct an explanation relating the speed of an object to the energy of that object. *Students are introduced to the relationship between energy and speed in this unit.

Science Lesson : Energy and Collisions
State: MD
Standards: NGSS
Performance Expectation:

Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. *In this unit, students are introduced to the concept of patterns caused by the relative motions of the sun, moon, and Earth.

Science Lesson : Waves and Energy
State: MD
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Science Lesson : Pitch and Volume
State: MD
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

State: MD
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

State: MD
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

State: MD
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

State: MD
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Science Lesson : Engineering Launchers
State: MD
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Science Lesson : Current Electricity
State: MD
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

State: MD
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Science Lesson : Friction and Motion
State: MD
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

State: MD
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

State: MD
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

State: MD
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Science Lesson : Windmill Forces
State: MD
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.*Students are introduced to energy transfer in this unit by focusing on moving substances. They will explore other forms of energy transfer in later units. 

Science Lesson : Forces and Levers
State: MD
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Science Lesson : Magnets and Motors
State: MD
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Science Lesson : Sound Energy
State: MD
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

State: MD
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

State: MD
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

State: MD
Standards: NGSS
Performance Expectation:

Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents.

Science Lesson : Energy and Collisions
State: MD
Standards: NGSS
Performance Expectation:

Ask questions and predict outcomes about the changes in energy that occur when objects collide.

State: MD
Standards: NGSS
Performance Expectation:

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

State: MD
Standards: NGSS
Performance Expectation:

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

State: MD
Standards: NGSS
Performance Expectation:

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another. 

State: MD
Standards: NGSS
Performance Expectation:

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

Science Lesson : Engineering Launchers
State: MD
Standards: NGSS
Performance Expectation:

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

Science Lesson : Magnets and Motors
State: MD
Standards: NGSS
Performance Expectation:

Apply scientific ideas to design, test, and refine a device that converts energy from one form to another.

Science Lesson : Waves and Energy
State: MD
Standards: NGSS
Performance Expectation:

Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move.

Science Lesson : Sound Energy
State: MD
Standards: NGSS
Performance Expectation:

Develop a model of waves to describe patterns in terms of amplitude and wavelength and that waves can cause objects to move.

State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.

State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.

State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe that light reflecting from objects and entering the eye allows objects to be seen.

State: MD
Standards: NGSS
Performance Expectation:

Generate and compare multiple solutions that use patterns to transfer information.

State: MD
Standards: NGSS
Performance Expectation:

Support an argument that the apparent brightness of the sun and stars is due to their relative distances from Earth. 

State: MD
Standards: NGSS
Performance Expectation:

Support an argument that the apparent brightness of the sun and stars is due to their relative distances from Earth.

State: MD
Standards: NGSS
Performance Expectation:

Support an argument that the apparent brightness of the sun and stars is due to their relative distances from Earth.

Science Lesson : Patterns
State: MD
Standards: NGSS
Performance Expectation:

Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky.

State: MD
Standards: NGSS
Performance Expectation:

Represent data in graphical displays to reveal patterns of daily changes in length and direction of shadows, day and night, and the seasonal appearance of some stars in the night sky. *In this unit, students are introduced to the concept of patterns caused by the relative motions of the sun, moon, and Earth.

Science Lesson : Heat and Evaporation
State: MD
Standards: NGSS
Performance Expectation:

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

State: MD
Standards: NGSS
Performance Expectation:

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Science Lesson : Weathering Rocks
State: MD
Standards: NGSS
Performance Expectation:

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Science Lesson : Earth's Water
State: MD
Standards: NGSS
Performance Expectation:

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

State: MD
Standards: NGSS
Performance Expectation:

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

State: MD
Standards: NGSS
Performance Expectation:

 Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Science Lesson : Energy from the Sun
State: MD
Standards: NGSS
Performance Expectation:

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Science Lesson : Environmental Change
State: MD
Standards: NGSS
Performance Expectation:

Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.

Science Lesson : Heat and Evaporation
State: MD
Standards: NGSS
Performance Expectation:

Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.

State: MD
Standards: NGSS
Performance Expectation:

Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.

Science Lesson : Earth's Water
State: MD
Standards: NGSS
Performance Expectation:

Describe and graph the amounts and percentages of water and fresh water in various reservoirs to provide evidence about the distribution of water on Earth.

State: MD
Standards: NGSS
Performance Expectation:

Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.

State: MD
Standards: NGSS
Performance Expectation:

Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.

State: MD
Standards: NGSS
Performance Expectation:

Obtain and combine information about ways individual communities use science ideas to protect the Earth’s resources and environment.

Science Lesson : Plant Growth
State: MD
Standards: NGSS
Performance Expectation:

Support an argument that plants get the materials they need for growth chiefly from air and water.

State: MD
Standards: NGSS
Performance Expectation:

Support an argument that plants get the materials they need for growth chiefly from air and water.

Science Lesson : Food Webs
State: MD
Standards: NGSS
Performance Expectation:

Support an argument that plants get the materials they need for growth chiefly from air and water.

Science Lesson : Plant Structures
State: MD
Standards: NGSS
Performance Expectation:

Support an argument that plants get the materials they need for growth chiefly from air and water.

Science Lesson : Energy from the Sun
State: MD
Standards: NGSS
Performance Expectation:

Support an argument that plants get the materials they need for growth chiefly from air and water.

State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

Science Lesson : Ecosystem Dynamics
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

Science Lesson : Decomposition
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

Science Lesson : Energy from the Sun
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

Science Lesson : Waves and Energy
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

Science Lesson : Pitch and Volume
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

Science Lesson : Conservation of Matter
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

Science Lesson : Structure of Matter
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

Science Lesson : Properties of Matter
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

State: MD
Standards: NGSS
Performance Expectation:

 Develop a model to describe that matter is made of particles too small to be seen.

Science Lesson : Heat and Matter
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

Science Lesson : Current Electricity
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

Science Lesson : Sound Energy
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

Science Lesson : Static Charge
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen.

State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe that matter is made of particles too small to be seen. 

Science Lesson : Conservation of Matter
State: MD
Standards: NGSS
Performance Expectation:

Measure and graph quantities to provide evidence that regardless of the type of change that occurs when heating, cooling, or mixing substances, the total weight of matter is conserved.

Science Lesson : Pitch and Volume
State: MD
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

State: MD
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

State: MD
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

State: MD
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

State: MD
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

State: MD
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties. 

Science Lesson : Properties of Minerals
State: MD
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

State: MD
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

State: MD
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

State: MD
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

Science Lesson : Current Electricity
State: MD
Standards: NGSS
Performance Expectation:

 Make observations and measurements to identify materials based on their properties.

Science Lesson : Magnets and Motors
State: MD
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

State: MD
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

Science Lesson : Static Charge
State: MD
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties. 

State: MD
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties. 

State: MD
Standards: NGSS
Performance Expectation:

Make observations and measurements to identify materials based on their properties.

Science Lesson : Conservation of Matter
State: MD
Standards: NGSS
Performance Expectation:

Conduct an investigation to determine whether the mixing of two or more substances results in new substances.

Science Lesson : Water Erosion
State: MD
Standards: NGSS
Performance Expectation:

Conduct an investigation to determine whether the mixing of two or more substances results in new substances.

Science Lesson : Weathering Rocks
State: MD
Standards: NGSS
Performance Expectation:

Conduct an investigation to determine whether the mixing of two or more substances results in new substances.

State: MD
Standards: NGSS
Performance Expectation:

Support an argument that the gravitational force exerted by Earth on objects is directed down.

State: MD
Standards: NGSS
Performance Expectation:

Support an argument that the gravitational force exerted by Earth on objects is directed down.

State: MD
Standards: NGSS
Performance Expectation:

Support an argument that the gravitational force exerted by Earth on objects is directed down.

State: MD
Standards: NGSS
Performance Expectation:

Support an argument that the gravitational force exerted by Earth on objects is directed down.

Science Lesson : Engineering Launchers
State: MD
Standards: NGSS
Performance Expectation:

Support an argument that the gravitational force exerted by Earth on objects is directed down.

Science Lesson : Engineering Skyscrapers
State: MD
Standards: NGSS
Performance Expectation:

Support an argument that the gravitational force exerted by Earth on objects is directed down.

State: MD
Standards: NGSS
Performance Expectation:

Support an argument that the gravitational force exerted by Earth on objects is directed down.

Science Lesson : Forces and Materials
State: MD
Standards: NGSS
Performance Expectation:

 Support an argument that the gravitational force exerted by Earth on objects is directed down.

Science Lesson : Forces and Levers
State: MD
Standards: NGSS
Performance Expectation: Support an argument that the gravitational force exerted by Earth on objects is directed down.
State: MD
Standards: NGSS
Performance Expectation:

Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun.

Science Lesson : Energy from the Sun
State: MD
Standards: NGSS
Performance Expectation:

Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun.

Science Lesson : Food Webs
State: MD
Standards: NGSS
Performance Expectation:

Use models to describe that energy in animals’ food (used for body repair, growth, motion, and to maintain body warmth) was once energy from the sun.

Science Lesson : Who Scientists Are
State: MD
Standards: NGSS
Performance Expectation:

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

State: MD
Standards: NGSS
Performance Expectation:

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

State: MD
Standards: NGSS
Performance Expectation:

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

State: MD
Standards: NGSS
Performance Expectation:

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Science Lesson : Engineering Boats
State: MD
Standards: NGSS
Performance Expectation:

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

State: MD
Standards: NGSS
Performance Expectation:

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Science Lesson : Engineering Dams
State: MD
Standards: NGSS
Performance Expectation:

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Science Lesson : Windy Weather
State: MD
Standards: NGSS
Performance Expectation:

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool

Science Lesson : Controlling Erosion
State: MD
Standards: NGSS
Performance Expectation:

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

State: MD
Standards: NGSS
Performance Expectation: Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.
State: MD
Standards: NGSS
Performance Expectation:

Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool.

Science Lesson : Who Scientists Are
State: MD
Standards: NGSS
Performance Expectation:

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Science Lesson : Engineering Dams
State: MD
Standards: NGSS
Performance Expectation:

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

State: MD
Standards: NGSS
Performance Expectation:

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

State: MD
Standards: NGSS
Performance Expectation:

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

State: MD
Standards: NGSS
Performance Expectation:

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Science Lesson : Engineering Boats
State: MD
Standards: NGSS
Performance Expectation:

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

State: MD
Standards: NGSS
Performance Expectation:

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Science Lesson : Windy Weather
State: MD
Standards: NGSS
Performance Expectation:

 Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem

Science Lesson : Controlling Erosion
State: MD
Standards: NGSS
Performance Expectation:

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

State: MD
Standards: NGSS
Performance Expectation:

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

State: MD
Standards: NGSS
Performance Expectation:

Develop a simple sketch, drawing, or physical model to illustrate how the shape of an object helps it function as needed to solve a given problem.

Science Lesson : Who Scientists Are
State: MD
Standards: NGSS
Performance Expectation:

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

Science Lesson : Controlling Erosion
State: MD
Standards: NGSS
Performance Expectation:

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

State: MD
Standards: NGSS
Performance Expectation:

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.

State: MD
Standards: NGSS
Performance Expectation:

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.

State: MD
Standards: NGSS
Performance Expectation:

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

State: MD
Standards: NGSS
Performance Expectation:

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.

Science Lesson : Engineering Boats
State: MD
Standards: NGSS
Performance Expectation:

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.

Science Lesson : Engineering Dams
State: MD
Standards: NGSS
Performance Expectation:

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.

State: MD
Standards: NGSS
Performance Expectation: Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each perform.
State: MD
Standards: NGSS
Performance Expectation:

Analyze data from tests of two objects designed to solve the same problem to compare the strengths and weaknesses of how each performs.

Science Lesson : Who Scientists Are
State: MD
Standards: NGSS
Performance Expectation:

Use and share observations of local weather conditions to describe patterns over time.

Science Lesson : Weather Patterns
State: MD
Standards: NGSS
Performance Expectation:

Use and share observations of local weather conditions to describe patterns over time.

Science Lesson : Windy Weather
State: MD
Standards: NGSS
Performance Expectation:

Use and share observations of local weather conditions to describe patterns over time

Science Lesson : Heat and Water
State: MD
Standards: NGSS
Performance Expectation:

Use and share observations of local weather conditions to describe patterns over time.

Science Lesson : The Water Cycle
State: MD
Standards: NGSS
Performance Expectation:

Use and share observations of local weather conditions to describe patterns over time.

Science Lesson : Weather and Seasons
State: MD
Standards: NGSS
Performance Expectation:

Use and share observations of local weather conditions to describe patterns over time.

Science Lesson : Growing Plants
State: MD
Standards: NGSS
Performance Expectation:

Construct an argument supported by evidence for how plants and animals (including humans) can change the environment to meet their needs.

State: MD
Standards: NGSS
Performance Expectation:

Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live

Science Lesson : Animal Habitats
State: MD
Standards: NGSS
Performance Expectation:

Use a model to represent the relationship between the needs of different plants and animals (including humans) and the places they live

Science Lesson : Who Scientists Are
State: MD
Standards: NGSS
Performance Expectation:

Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.

Science Lesson : Extreme Weather
State: MD
Standards: NGSS
Performance Expectation:

Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.

Science Lesson : Windy Weather
State: MD
Standards: NGSS
Performance Expectation:

Ask questions to obtain information about the purpose of weather forecasting to prepare for, and respond to, severe weather.

Science Lesson : Human Shelter
State: MD
Standards: NGSS
Performance Expectation:

Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.

State: MD
Standards: NGSS
Performance Expectation:

Communicate solutions that will reduce the impact of humans on the land, water, air, and/or other living things in the local environment.

State: MD
Standards: NGSS
Performance Expectation:

Use observations to describe patterns of what plants and animals (including humans) need to survive.

State: MD
Standards: NGSS
Performance Expectation:

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Science Lesson : Growing Plants
State: MD
Standards: NGSS
Performance Expectation:

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Science Lesson : Animal Habitats
State: MD
Standards: NGSS
Performance Expectation:

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Science Lesson : Parts of Plants
State: MD
Standards: NGSS
Performance Expectation:

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Science Lesson : Germinating Seeds
State: MD
Standards: NGSS
Performance Expectation:

Use observations to describe patterns of what plants and animals (including humans) need to survive.

State: MD
Standards: NGSS
Performance Expectation:

Use observations to describe patterns of what plants and animals (including humans) need to survive.

Science Lesson : Pushes and Pulls
State: MD
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.

Science Lesson : Forces and Motion
State: MD
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.

Science Lesson : Friction and Motion
State: MD
Standards: NGSS
Performance Expectation:

Plan and conduct an investigation to compare the effects of different strengths or different directions of pushes and pulls on the motion of an object.

State: MD
Standards: NGSS
Performance Expectation:

Analyze data to determine if a design solution works as intended to change the speed or direction of an object with a push or a pull.

Science Lesson : Who Scientists Are
State: MD
Standards: NGSS
Performance Expectation:

Make observations to determine the effect of sunlight on Earth’s surface

Science Lesson : Weather Patterns
State: MD
Standards: NGSS
Performance Expectation:

Make observations to determine the effect of sunlight on Earth’s surface.

Science Lesson : Weather and Seasons
State: MD
Standards: NGSS
Performance Expectation:

Make observations to determine the effect of sunlight on Earth’s surface.

Science Lesson : The Water Cycle
State: MD
Standards: NGSS
Performance Expectation:

Make observations to determine the effect of sunlight on Earth’s surface

State: MD
Standards: NGSS
Performance Expectation:

Make observations to determine the effect of sunlight on Earth’s surface

Science Lesson : Sun and Shade
State: MD
Standards: NGSS
Performance Expectation:

Make observations to determine the effect of sunlight on Earth’s surface

Science Lesson : Color and Temperature
State: MD
Standards: NGSS
Performance Expectation:

Make observations to determine the effect of sunlight on Earth’s surface

State: MD
Standards: NGSS
Performance Expectation:

Make observations to determine the effect of sunlight on Earth’s surface

Science Lesson : Who Scientists Are
State: MD
Standards: NGSS
Performance Expectation:

Use tools and materials provided to design and build a structure that will reduce the warming effect of sunlight on Earth’s surface.

State: MD
Standards: NGSS
Performance Expectation:

Use tools and materials provided to design and build a structure that will reduce the warming effect of sunlight on Earth’s surface.

State: MD
Standards: NGSS
Performance Expectation: Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons. 
Science Lesson : Sun-Earth-Moon System
State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model of the Earth-Sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons

Science Lesson : Climate Analysis
State: MD
Standards: NGSS
Performance Expectation: Develop and use a model of the Earth-Sun-moon system to explain the cyclical patterns of lunar phases, eclipses of the sun and moon, and seasons.
Science Lesson : Earth-Sun-Moon System
State: MD
Standards: NGSS
Performance Expectation: Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons.
Science Lesson : Sun-Earth-Moon System
State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.

State: MD
Standards: NGSS
Performance Expectation: Develop and use a model to describe the role of gravity in the motions within galaxies and the solar system.
State: MD
Standards: NGSS
Performance Expectation:  Analyze and interpret data to determine scale properties of objects in the solar system.
State: MD
Standards: NGSS
Performance Expectation: Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history.
Science Lesson : Animal Diversity
State: MD
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history.

State: MD
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history.

Science Lesson : Climate Analysis
State: MD
Standards: NGSS
Performance Expectation: Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth’s 4.6-billion-year-old history.
Science Lesson : Groundwater Flow
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.

Science Lesson : The Rock Cycle
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.

Science Lesson : Earth Materials
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.

Science Lesson : Glacier Motion
State: MD
Standards: NGSS
Performance Expectation:

Use a model to illustrate that energy from Earth’s interior drives convection that cycles Earth’s crust, leading to melting, crystallization, weathering, and deformation of large rock formations, including generation of ocean seafloor at ridges, submergence of ocean seafloor at trenches, mountain building, and active volcanic chains.

Science Lesson : Mass and Heat Transfer
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process.

Science Lesson : The Rock Cycle
State: MD
Standards: NGSS
Performance Expectation:

Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.

Science Lesson : Weathering and Erosion
State: MD
Standards: NGSS
Performance Expectation:

 Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.

Science Lesson : Earth Materials
State: MD
Standards: NGSS
Performance Expectation:

Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying time and spatial scales.

Science Lesson : Glacier Motion
State: MD
Standards: NGSS
Performance Expectation: Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying times and spatial scales.
Science Lesson : Climate Analysis
State: MD
Standards: NGSS
Performance Expectation:  Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying times and spatial scales.
Science Lesson : Groundwater Flow
State: MD
Standards: NGSS
Performance Expectation:

Construct an explanation based on evidence for how geoscience processes have changed Earth’s surface at varying times and spatial scales.

State: MD
Standards: NGSS
Performance Expectation: Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.
Science Lesson : Earth Materials
State: MD
Standards: NGSS
Performance Expectation:

Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.

State: MD
Standards: NGSS
Performance Expectation:

Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.

State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.

State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.

State: MD
Standards: NGSS
Performance Expectation: Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.
Science Lesson : Convection and Weather
State: MD
Standards: NGSS
Performance Expectation:

Collect data to provide evidence for how the motions and complex interactions of air masses result in changes in weather conditions.

State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.

Science Lesson : Weathering and Erosion
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.

Science Lesson : Glacier Motion
State: MD
Standards: NGSS
Performance Expectation: Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.
Science Lesson : Groundwater Flow
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.

Science Lesson : Climate Analysis
State: MD
Standards: NGSS
Performance Expectation: Develop a model to describe the cycling of water through Earth’s systems driven by energy from the sun and the force of gravity.
State: MD
Standards: NGSS
Performance Expectation:

 Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

State: MD
Standards: NGSS
Performance Expectation:

 Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

Science Lesson : Earth’s Climate
State: MD
Standards: NGSS
Performance Expectation:

 Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

State: MD
Standards: NGSS
Performance Expectation: Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.
Science Lesson : Convection and Weather
State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

State: MD
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes.

Science Lesson : Natural Resources
State: MD
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes.

Science Lesson : Groundwater Flow
State: MD
Standards: NGSS
Performance Expectation:

Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

State: MD
Standards: NGSS
Performance Expectation:

Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

State: MD
Standards: NGSS
Performance Expectation:

Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

State: MD
Standards: NGSS
Performance Expectation:

 Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

State: MD
Standards: NGSS
Performance Expectation:

Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

State: MD
Standards: NGSS
Performance Expectation:

Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems.

Science Lesson : Greenhouse Effect
State: MD
Standards: NGSS
Performance Expectation:

Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems.

State: MD
Standards: NGSS
Performance Expectation:

Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

Science Lesson : Climate Analysis
State: MD
Standards: NGSS
Performance Expectation: Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.
Science Lesson : Greenhouse Effect
State: MD
Standards: NGSS
Performance Expectation:

Ask questions to clarify evidence of the factors that have caused the rise of global temperatures over the past.

Science Lesson : Engineering Vehicles
State: MD
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Science Lesson : Engineering Speakers
State: MD
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

State: MD
Standards: NGSS
Performance Expectation: Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
State: MD
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

State: MD
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Science Lesson : Engineering Seismograph
State: MD
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Science Lesson : Engineering Greenhouses
State: MD
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

State: MD
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

State: MD
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

State: MD
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

State: MD
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

State: MD
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

Science Lesson : Engineering Bridges
State: MD
Standards: NGSS
Performance Expectation:

Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

State: MD
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Science Lesson : Engineering Vehicles
State: MD
Standards: NGSS
Performance Expectation:

 Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

State: MD
Standards: NGSS
Performance Expectation: Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
Science Lesson : Engineering Greenhouses
State: MD
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Science Lesson : Engineering Speakers
State: MD
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

State: MD
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

State: MD
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

State: MD
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

State: MD
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Science Lesson : Engineering Seismograph
State: MD
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

State: MD
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

State: MD
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Science Lesson : Engineering Bridges
State: MD
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Science Lesson : Engineering Seismograph
State: MD
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Science Lesson : Engineering Vehicles
State: MD
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Science Lesson : Engineering Speakers
State: MD
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

State: MD
Standards: NGSS
Performance Expectation: Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.
State: MD
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Science Lesson : Engineering Greenhouses
State: MD
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

State: MD
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

State: MD
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

State: MD
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

State: MD
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

State: MD
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

State: MD
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

Science Lesson : Engineering Bridges
State: MD
Standards: NGSS
Performance Expectation:

Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

State: MD
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

State: MD
Standards: NGSS
Performance Expectation: Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Science Lesson : Engineering Vehicles
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Science Lesson : Engineering Speakers
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

State: MD
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

State: MD
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

State: MD
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Science Lesson : Engineering Bridges
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Science Lesson : Engineering Greenhouses
State: MD
Standards: NGSS
Performance Expectation:

 Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

State: MD
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Science Lesson : Engineering Seismograph
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

State: MD
Standards: NGSS
Performance Expectation:

Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

State: MD
Standards: NGSS
Performance Expectation:

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

State: MD
Standards: NGSS
Performance Expectation:

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

State: MD
Standards: NGSS
Performance Expectation:

 Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

Science Lesson : Comparing Cells
State: MD
Standards: NGSS
Performance Expectation: Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.
State: MD
Standards: NGSS
Performance Expectation:

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

State: MD
Standards: NGSS
Performance Expectation:

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

Science Lesson : Sucrose and Heart Rate
State: MD
Standards: NGSS
Performance Expectation:  Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.
State: MD
Standards: NGSS
Performance Expectation:

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

Science Lesson : Cellular Respiration
State: MD
Standards: NGSS
Performance Expectation: Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells
Science Lesson : The Cell Membrane
State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

Science Lesson : Photosynthesis
State: MD
Standards: NGSS
Performance Expectation:

 Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

Science Lesson : Comparing Cells
State: MD
Standards: NGSS
Performance Expectation: Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.
State: MD
Standards: NGSS
Performance Expectation:

Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

State: MD
Standards: NGSS
Performance Expectation:

 Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

Science Lesson : Sucrose and Heart Rate
State: MD
Standards: NGSS
Performance Expectation: Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.
State: MD
Standards: NGSS
Performance Expectation:

 Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

State: MD
Standards: NGSS
Performance Expectation:

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. 

State: MD
Standards: NGSS
Performance Expectation:

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Science Lesson : Reproduction
State: MD
Standards: NGSS
Performance Expectation:

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Science Lesson : Rocky Shore Ecosystems
State: MD
Standards: NGSS
Performance Expectation:

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Science Lesson : The Cell Membrane
State: MD
Standards: NGSS
Performance Expectation:

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively. 

Science Lesson : Natural Selection
State: MD
Standards: NGSS
Performance Expectation:

Use arguments based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

State: MD
Standards: NGSS
Performance Expectation:

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Science Lesson : Forest Food Web
State: MD
Standards: NGSS
Performance Expectation:

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Science Lesson : Sea Star Structures
State: MD
Standards: NGSS
Performance Expectation:

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

State: MD
Standards: NGSS
Performance Expectation:

Use argument based on empirical evidence and scientific reasoning to support an explanation for how characteristic animal behaviors and specialized plant structures affect the probability of successful reproduction of animals and plants respectively.

Science Lesson : Life on Earth
State: MD
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

Science Lesson : Natural Selection
State: MD
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. 

Science Lesson : Photosynthesis
State: MD
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

Science Lesson : DNA and Proteins
State: MD
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms. 

Science Lesson :
State: MD
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

Science Lesson : Rocky Shore Ecosystems
State: MD
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

State: MD
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

Science Lesson : Food and Energy
State: MD
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

Science Lesson : Photosynthesis
State: MD
Standards: NGSS
Performance Expectation:

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms

Science Lesson : Comparing Cells
State: MD
Standards: NGSS
Performance Expectation:  Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.
Science Lesson : Food and Energy
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.

Science Lesson : Cellular Respiration
State: MD
Standards: NGSS
Performance Expectation: Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.
Science Lesson : Sucrose and Heart Rate
State: MD
Standards: NGSS
Performance Expectation:

Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.

State: MD
Standards: NGSS
Performance Expectation:

Gather and synthesize information that sensory receptors respond to stimul

Science Lesson : Rocky Shore Ecosystems
State: MD
Standards: NGSS
Performance Expectation:

Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

Science Lesson : Food Webs
State: MD
Standards: NGSS
Performance Expectation:

Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

Science Lesson :
State: MD
Standards: NGSS
Performance Expectation:

Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

Science Lesson : Food Webs
State: MD
Standards: NGSS
Performance Expectation:

Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.

Science Lesson : Rocky Shore Ecosystems
State: MD
Standards: NGSS
Performance Expectation:

Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.

Science Lesson : Rocky Shore Ecosystems
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

Science Lesson : Food Webs
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

Science Lesson : Forest Food Web
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

State: MD
Standards: NGSS
Performance Expectation:

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

Science Lesson : Food Webs
State: MD
Standards: NGSS
Performance Expectation:

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

Science Lesson : Rocky Shore Ecosystems
State: MD
Standards: NGSS
Performance Expectation:

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

Science Lesson :
State: MD
Standards: NGSS
Performance Expectation:

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

State: MD
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

State: MD
Standards: NGSS
Performance Expectation:

Evaluate competing design solutions for maintaining biodiversity and ecosystem services.

State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

Science Lesson : Animal Diversity
State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

Science Lesson : Natural Selection
State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

Science Lesson : DNA and Mutations
State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

Science Lesson : Heredity and Traits
State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

Science Lesson : Reproduction
State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to show why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Science Lesson : Heredity and Traits
State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Science Lesson : Animal Diversity
State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Science Lesson : Reproduction
State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Science Lesson : Animal Diversity
State: MD
Standards: NGSS
Performance Expectation:

Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.

Science Lesson : Comparing Cells
State: MD
Standards: NGSS
Performance Expectation:

Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.

Science Lesson : Life on Earth
State: MD
Standards: NGSS
Performance Expectation:

 Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.

State: MD
Standards: NGSS
Performance Expectation: Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.
Science Lesson : Life on Earth
State: MD
Standards: NGSS
Performance Expectation:

Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

Science Lesson : Animal Diversity
State: MD
Standards: NGSS
Performance Expectation:

Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

Science Lesson : Comparing Cells
State: MD
Standards: NGSS
Performance Expectation:

Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

Science Lesson : Animal Diversity
State: MD
Standards: NGSS
Performance Expectation:

Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.

Science Lesson : Life on Earth
State: MD
Standards: NGSS
Performance Expectation:

Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.

Science Lesson : DNA and Mutations
State: MD
Standards: NGSS
Performance Expectation:

Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.

Science Lesson : Natural Selection
State: MD
Standards: NGSS
Performance Expectation:

Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.

Science Lesson : Natural Selection
State: MD
Standards: NGSS
Performance Expectation:

Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.

Science Lesson : Heredity and Traits
State: MD
Standards: NGSS
Performance Expectation:

Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in organisms.

Science Lesson : Natural Selection
State: MD
Standards: NGSS
Performance Expectation:

Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.

Science Lesson : Atoms
State: MD
Standards: NGSS
Performance Expectation:

Develop models to describe the atomic composition of simple molecules and extended structures

Science Lesson : Molecules
State: MD
Standards: NGSS
Performance Expectation:

Develop models to describe the atomic composition of simple molecules and extended structures

Science Lesson : Natural Resources
State: MD
Standards: NGSS
Performance Expectation:

Develop models to describe the atomic composition of simple molecules and extended structures.

State: MD
Standards: NGSS
Performance Expectation:

Develop models to describe the atomic composition of simple molecules and extended structures.

State: MD
Standards: NGSS
Performance Expectation:

Develop models to describe the atomic composition of simple molecules and extended structures.

Science Lesson : The Rock Cycle
State: MD
Standards: NGSS
Performance Expectation:

Develop models to describe the atomic composition of simple molecules and extended structures.

Science Lesson : Chemical Reactions
State: MD
Standards: NGSS
Performance Expectation: Develop models to describe the atomic composition of simple molecules and extended structures.
State: MD
Standards: NGSS
Performance Expectation: Develop models to describe the atomic composition of simple molecules and extended structures.
Science Lesson : Renewable Energy
State: MD
Standards: NGSS
Performance Expectation:  Develop models to describe the atomic composition of simple molecules and extended structures.
Science Lesson : Molecules
State: MD
Standards: NGSS
Performance Expectation:

Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Science Lesson : Chemical Reactions
State: MD
Standards: NGSS
Performance Expectation:

Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Science Lesson : Chemical Reactions
State: MD
Standards: NGSS
Performance Expectation:

Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

Science Lesson : Renewable Energy
State: MD
Standards: NGSS
Performance Expectation: Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.
Science Lesson : Natural Resources
State: MD
Standards: NGSS
Performance Expectation:

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

Science Lesson : Mass and Motion
State: MD
Standards: NGSS
Performance Expectation:

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

State: MD
Standards: NGSS
Performance Expectation:

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

Science Lesson : Chemical Reactions
State: MD
Standards: NGSS
Performance Expectation:

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

State: MD
Standards: NGSS
Performance Expectation: Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.
State: MD
Standards: NGSS
Performance Expectation:

Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.

Science Lesson : Mass and Heat Transfer
State: MD
Standards: NGSS
Performance Expectation:

Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

Science Lesson : Chemical Reactions
State: MD
Standards: NGSS
Performance Expectation: Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed. 
Science Lesson : Molecules
State: MD
Standards: NGSS
Performance Expectation:

Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

Science Lesson : Chemical Reactions
State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Science Lesson : Chemical Reactions
State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Science Lesson : Chemical Reactions
State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Science Lesson : The Rock Cycle
State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

Science Lesson : Renewable Energy
State: MD
Standards: NGSS
Performance Expectation:  Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.
Science Lesson : Molecules
State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.

State: MD
Standards: NGSS
Performance Expectation:

Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.

Science Lesson : Mass and Motion
State: MD
Standards: NGSS
Performance Expectation:

Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects.

Science Lesson : Chemical Reactions
State: MD
Standards: NGSS
Performance Expectation:

Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

State: MD
Standards: NGSS
Performance Expectation: Apply Newton’s Third Law to design a solution to a problem involving the motion of two colliding objects.
Science Lesson : Engineering Vehicles
State: MD
Standards: NGSS
Performance Expectation:

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.

Science Lesson : Mass and Motion
State: MD
Standards: NGSS
Performance Expectation:

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.

State: MD
Standards: NGSS
Performance Expectation: Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.
Science Lesson : Engineering Seismograph
State: MD
Standards: NGSS
Performance Expectation:

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.

State: MD
Standards: NGSS
Performance Expectation:

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object. 

Science Lesson : Forces and Motion
State: MD
Standards: NGSS
Performance Expectation:

Plan an investigation to provide evidence that the change in an object’s motion depends on the sum of the forces on the object and the mass of the object.

Science Lesson : Engineering Speakers
State: MD
Standards: NGSS
Performance Expectation:

Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

State: MD
Standards: NGSS
Performance Expectation:

Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

Science Lesson : Magnetism and Energy
State: MD
Standards: NGSS
Performance Expectation:

Ask questions about data to determine the factors that affect the strength of electric and magnetic forces.

State: MD
Standards: NGSS
Performance Expectation: Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.
Science Lesson : Sun-Earth-Moon System
State: MD
Standards: NGSS
Performance Expectation:

Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

Science Lesson : Glacier Motion
State: MD
Standards: NGSS
Performance Expectation:

Use evidence to support the claim that gravitational forces between objects are attractive and are only noticeable when one or both of the objects have a very large mass.

Science Lesson : Sea Star Structures
State: MD
Standards: NGSS
Performance Expectation:

Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

Science Lesson : Earth-Sun-Moon System
State: MD
Standards: NGSS
Performance Expectation: Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.
State: MD
Standards: NGSS
Performance Expectation: Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.
Science Lesson : Energy Transformation
State: MD
Standards: NGSS
Performance Expectation:

Construct and present arguments using evidence to support the claim that gravitational interactions are attractive and depend on the masses of interacting objects.

Science Lesson : Engineering Speakers
State: MD
Standards: NGSS
Performance Expectation:

Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

State: MD
Standards: NGSS
Performance Expectation:

Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

Science Lesson : Magnetism and Energy
State: MD
Standards: NGSS
Performance Expectation:

Conduct an investigation and evaluate the experimental design to provide evidence that fields exist between objects exerting forces on each other even though the objects are not in contact.

State: MD
Standards: NGSS
Performance Expectation:

Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

Science Lesson : Mass and Motion
State: MD
Standards: NGSS
Performance Expectation:

Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

State: MD
Standards: NGSS
Performance Expectation:

Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. 

Science Lesson : Engineering Speakers
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

Science Lesson : Magnetism and Energy
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

Science Lesson : Energy Transformation
State: MD
Standards: NGSS
Performance Expectation:

Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

State: MD
Standards: NGSS
Performance Expectation:

Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

Science Lesson : Mass and Heat Transfer
State: MD
Standards: NGSS
Performance Expectation:

Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

Science Lesson : Engineering Greenhouses
State: MD
Standards: NGSS
Performance Expectation:

Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

Science Lesson : Chemical Reactions
State: MD
Standards: NGSS
Performance Expectation:

 Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer. 

State: MD
Standards: NGSS
Performance Expectation:

Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

Science Lesson : Chemical Reactions
State: MD
Standards: NGSS
Performance Expectation:

Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample. *In this unit, students focus on the relationship between the energy transferred and the change in the average kinetic energy of the substance’s particles. They will incorporate the other aspects of the standard in later units.

Science Lesson : Chemical Reactions
State: MD
Standards: NGSS
Performance Expectation:

 Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

Science Lesson : Mass and Heat Transfer
State: MD
Standards: NGSS
Performance Expectation:

Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

State: MD
Standards: NGSS
Performance Expectation:

Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

Science Lesson : Engineering Vehicles
State: MD
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

State: MD
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Science Lesson : Chemical Reactions
State: MD
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Science Lesson : Chemical Reactions
State: MD
Standards: NGSS
Performance Expectation:

 Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

State: MD
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

State: MD
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Science Lesson : Chemical Reactions
State: MD
Standards: NGSS
Performance Expectation: Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
State: MD
Standards: NGSS
Performance Expectation: Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.
Science Lesson : Mass and Heat Transfer
State: MD
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

State: MD
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

State: MD
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Science Lesson : Magnetism and Energy
State: MD
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

State: MD
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Science Lesson : Forces and Motion
State: MD
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Science Lesson : Mass and Motion
State: MD
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Science Lesson : Energy Transformation
State: MD
Standards: NGSS
Performance Expectation:

Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

State: MD
Standards: NGSS
Performance Expectation:

 Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

State: MD
Standards: NGSS
Performance Expectation:

Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

State: MD
Standards: NGSS
Performance Expectation:

Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

Science Lesson : Engineering Seismograph
State: MD
Standards: NGSS
Performance Expectation:

Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

State: MD
Standards: NGSS
Performance Expectation:

Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

State: MD
Standards: NGSS
Performance Expectation:

Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

State: MD
Standards: NGSS
Performance Expectation:

 Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

Science Lesson : Communication Systems
State: MD
Standards: NGSS
Performance Expectation:

Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

State: MD
Standards: NGSS
Performance Expectation:

 Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

State: MD
Standards: NGSS
Performance Expectation:

Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

This alignment guide shows how KnowAtom’s integrated model of science curriculum is designed for NGSS

New call-to-action

Learn How to Get Started Using KnowAtom in Your School

Other State Standards

Standards citation: NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press. Neither WestEd nor the lead states and partners that developed the Next Generation Science Standards were involved in the production of this product, and do not endorse it.