KnowAtom's Blog

Student-Centered Learning: How to Teach Students to Ask Good Questions

Oct 23, 2023 by Judy Higgins

One of the most important things we can teach our students, no matter what grade level or topic you teach, is how to ask good questions.

When I think about this important topic, I can't help but consider how my teaching style has changed over the past 20 years. Today, when I think about how to support student centered learning in my classroom, I want to make sure that I am modeling good questions. That's because teacher modeling is an important way to teach students how to ask good questions themselves.

In this article, I am going to share with you what a good question looks like and how to teach your students ways to identify and use them effectively.

Student-Centered Teaching 

A student-centered classroom starts with the teacher. We've learned that we can improve student engagement and achieve better outcomes by giving up some of the control we have as teachers.

Students who are given an active role in the classroom have more opportunities to think critically about the concepts and how they relate to the world around them. Rather than asking students to read and memorize, we need to be asking them to collaborate with their peers, discover new ideas, and make strong connections.

With student-centered learning, giving students a voice in the classroom helps improve student engagement, but students need to develop the skills to take the lead. Learning how to ask authentic questions of their peers, their teachers, and their sources – is a great way to start.

Student-Centered Teaching and Asking Good Questions

Good questions are good questions regardless of who you're interacting with or what subject you're teaching. If you're not a KnowAtom teacher, if you're a teacher who teaches another subject, a parent, or a principal, all of these things will apply to your students as well!

Let's look first at where we can expect students to ask good questions when implementing a student-centered approach during a lesson.

KnowAtom's science curriculum starts off with a nonfiction reading component every time. That's where a lot of the questioning will happen in a student centered teaching model.

From there, we move on to Socratic dialogue, where students discuss the questions, wonders, or connections they made from the reading. Questioning plays a big part in this section of the lesson and if we can improve our students' questioning skills, we can improve our classroom dialogue.

Students then move into planning, and we ask them to think like scientists or engineers. That entails a lot of questions about what's going to happen in the hands-on investigation portion of the unit. Then, the students carry out their investigation, experiment, or engineering activity. Lots and lots of questions are happening as part of this section as well.

Finally, students share their conclusions in a debrief. One of the things that I enjoy most with student centered learning is listening to students question each other about their data and their outcomes.

Why Encourage Questioning in Student Centered Learning?

What's the purpose of questions? The main purpose of encouraging students to ask good questions is to engage them in taking a position on a concept or big idea from the reading. When you think about it, that's a really risky proposition. Perhaps that's why when I first started teaching, I asked questions like "What is a hurricane?" rather than "How are hurricanes related to the water cycle?"

Continue reading

Topics: science and engineering practices, Next Generation Science Standards, higher order thinking, STEAM, Expert, STEAM Curriculum, Next Generation Science

Engage Science and Engineering as a Way of Thinking with NGSS Practices

Jan 20, 2023 by Francis Vigeant

Exploring the Role of Scientists and Engineers with NGSS Storyline Pedagogy

The next-generation model of science instruction is not just about giving students a chance to take the lead in their own learning – it’s about students acting as scientists and engineers every day in the classroom. When we introduce real-world phenomena into the learning process, we connect classroom instruction to career exploration. With NGSS storyline pedagogy and science and engineering practices, students are unpacking complex phenomena over days and weeks. They explore real-world events, understand the purpose of the work of scientists and engineers, and use their current knowledge to uncover new information – strengthening critical thinking, communication, math, and ELA skills in the process.

Continue reading

Topics: science and engineering practices, NGSS Storylines

Cooperative Learning Strategies, Activities and Checkpoints

Oct 17, 2021 by Judy Higgins

Updated on November 10, 2023

Cooperative learning is essential to implementing effective NGSS-led instructional methods. When taking the lead on their own learning process during cooperative learning activities, students are constructing their own understanding of the content, linking it to their current knowledge, learning from one another, and making personal connections with the subject matter and the world around them. In this article, you’ll learn what cooperative learning is and how cooperative learning strategies are supported by the use of checkpoints.

What is Cooperative Learning?

Cooperative learning is an instructional model designed to improve student learning outcomes by promoting collaborative, structured activities in small groups of students. When collaborating in small groups of two to four peers, students have the opportunity to take responsibility for their own learning and act independently of a whole whole group environment.

Continue reading

Topics: science and engineering practices, Next Generation Science Standards, higher order thinking, STEAM, interactive science, Professional Development, STEAM Curriculum, Next Generation Science, NGSS-Designed Curriculum

The Best Formative Assessment for Accelerated Learning in Student Centered Classrooms

Oct 3, 2021 by Judy Higgins

To help students achieve accelerated learning in the classroom, teachers need to improve how we set and communicate our expectations. In student-centered learning, students choose what they will learn, and they set the pace. Teachers become classroom facilitators when their students take the lead in an accelerated learning program. Implementing formative assessments in a student centered classroom will improve outcomes because students better understand the expectations because they are getting continuous feedback in the moment.

What's the difference between formative and summative assessments? Formative assessments occur in the moment as students are engaged in making sense of phenomena. This real-time approach allows students to incorporate the feedback into their thinking and their work, becoming more aware of their own learning process and refining their skills in the moment. In a formative assessment, the teacher's role is an interested skeptic, engaged in the student's argument but pressing for evidence and reasoning. A formative assessment requires a shift in responsibility. Instead of a student trying to guess what the teacher wants, the student is productively struggling to develop skills and content knowledge, with support/coaching from the teacher. Summative assessments are more high stakes and occur less frequently, typically at the end of a lesson or unit.

Continue reading

Topics: science and engineering practices, Next Generation Science Standards, interactive science, STEAM Curriculum, Next Generation Science, NGSS-Designed Curriculum

Improving Teacher Expectations of What Students Can Learn with NGSS-Based Explorations

Jul 25, 2021 by Samantha Ozgood

An in depth look at the use of KnowAtom’s science curriculum by fourth and fifth grade teachers by Northeastern University researcher Dr. Tracy L. Waters revealed major changes in both teaching practices and the teacher’s expectations of what students can achieve. The educators who participated in Waters’ study expressed having higher expectations of their students after implementing the hands-on curriculum that aligns with Next Generation Science Standards (NGSS).

Continue reading

Topics: science and engineering practices, Inquiry Based Learning, Next Generation Science, NGSS-Designed Curriculum, New Standardized Testing

Using Full Release of Responsibility as a Tool for Mastery

Mar 3, 2017 by Francis Vigeant

Students who are given full responsibility to oversee their own experiment or prototype design, execution, data gathering and conclusion forming are actually in the roles of scientists and engineers. Conversely, students who follow prescribed courses are not fully enmeshed in these roles.

Continue reading

Topics: science and engineering practices, Next Generation Science Standards

What is Science and Engineering Proficiency?

Nov 11, 2016 by Francis Vigeant

It's important to understand what proficiency really means under the new standards. Previously, proficiency meant being able to answer a question in a textbook. Now, it means planning an investigation that yields data in order to answer a question set by the student. Same thing with engineering: Proficiency is identifying problems, developing prototypes, testing those prototypes, and gathering data to see if the concept devised by the student solves the problem.

Continue reading

Topics: science and engineering practices

The Difference Between Standards and Curriculum in 3 Dimensions

Feb 17, 2016 by Francis Vigeant

As districts begin to implement the Next Generation Science Standards, there is growing awareness that classrooms need to create inquiry environments where students engage as scientists and engineers.

Continue reading

Topics: science and engineering practices, Three-Dimensional Learning

What Science, Technology, Engineering and Math Really Are

Feb 14, 2016 by Francis Vigeant

The understanding of what science, technology, engineering and math are has shifted quite a bit in the last few years, and too often a definition for them is lacking. If a debate is sparked, it is likely to come from this changing definition; from what the roles of the teacher, student and curriculum actually are; and from the difference between curriculum and standards … a difference that is poorly understood even by many educators.

There are still a few gray areas when it comes to where the Next Generation Science Standards came from and what they’re trying to accomplish, but one thing that isn’t gray is the backing they have from our nation’s preeminent scientists and engineers.

Continue reading

Topics: science and engineering practices, Next Generation Science Standards, Common Core Standards

Overlap with Common Core ELA & Math

Feb 10, 2016 by Francis Vigeant

The Common Core Standards (CCSS) aren't just about ELA and math time on learning, they come alive in the context of a science, technology, and engineering classroom. Developing proficiency with CCSS in the context of STEM is a win-win that enriches all disciplines and gives students an applied appreciation for technical writing and applied math.

Continue reading

Topics: science and engineering practices, Next Generation Science Standards, Common Core Standards, ELA

Science and Engineering Practices

Feb 9, 2016 by Francis Vigeant

Science and engineering practices are not merely a set of skills, they are an intentional effort to combine both skills and knowledge in a contextualized classroom that allows students to engage with this material on a level that encourages their higher-order thinking skills. In fact, the goal of the Next Generation Science Standards is to reorder the priorities of thinking in the classroom, in some sense.

Continue reading

Topics: science and engineering practices, Next Generation Science Standards, Common Core Standards

Teach to Transform with Free Next Generation Science PD Sessions. Learn More!

Posts by Topic

see all

Stay Up to Date With Our Latest Posts

Pick How Often: