KnowAtom's Blog

Judy Higgins

Recent Posts

Student-Centered Learning: How to Teach Students to Ask Good Questions

Oct 23, 2023 by Judy Higgins

One of the most important things we can teach our students, no matter what grade level or topic you teach, is how to ask good questions.

When I think about this important topic, I can't help but consider how my teaching style has changed over the past 20 years. Today, when I think about how to support student centered learning in my classroom, I want to make sure that I am modeling good questions. That's because teacher modeling is an important way to teach students how to ask good questions themselves.

In this article, I am going to share with you what a good question looks like and how to teach your students ways to identify and use them effectively.

Student-Centered Teaching 

A student-centered classroom starts with the teacher. We've learned that we can improve student engagement and achieve better outcomes by giving up some of the control we have as teachers.

Students who are given an active role in the classroom have more opportunities to think critically about the concepts and how they relate to the world around them. Rather than asking students to read and memorize, we need to be asking them to collaborate with their peers, discover new ideas, and make strong connections.

With student-centered learning, giving students a voice in the classroom helps improve student engagement, but students need to develop the skills to take the lead. Learning how to ask authentic questions of their peers, their teachers, and their sources – is a great way to start.

Student-Centered Teaching and Asking Good Questions

Good questions are good questions regardless of who you're interacting with or what subject you're teaching. If you're not a KnowAtom teacher, if you're a teacher who teaches another subject, a parent, or a principal, all of these things will apply to your students as well!

Let's look first at where we can expect students to ask good questions when implementing a student-centered approach during a lesson.

KnowAtom's science curriculum starts off with a nonfiction reading component every time. That's where a lot of the questioning will happen in a student centered teaching model.

From there, we move on to Socratic dialogue, where students discuss the questions, wonders, or connections they made from the reading. Questioning plays a big part in this section of the lesson and if we can improve our students' questioning skills, we can improve our classroom dialogue.

Students then move into planning, and we ask them to think like scientists or engineers. That entails a lot of questions about what's going to happen in the hands-on investigation portion of the unit. Then, the students carry out their investigation, experiment, or engineering activity. Lots and lots of questions are happening as part of this section as well.

Finally, students share their conclusions in a debrief. One of the things that I enjoy most with student centered learning is listening to students question each other about their data and their outcomes.

Why Encourage Questioning in Student Centered Learning?

What's the purpose of questions? The main purpose of encouraging students to ask good questions is to engage them in taking a position on a concept or big idea from the reading. When you think about it, that's a really risky proposition. Perhaps that's why when I first started teaching, I asked questions like "What is a hurricane?" rather than "How are hurricanes related to the water cycle?"

Continue reading

Topics: science and engineering practices, Next Generation Science Standards, higher order thinking, STEAM, STEM / STEAM, STEAM Curriculum, Next Generation Science

Next Gen Curriculum Mapping: 3 Important Things to Unpack

Oct 28, 2021 by Judy Higgins

When it comes to Next Gen Curriculum and Standards, it's important to unpack curriculum mapping. NGSS Standards are performance expectations (PEs), and there are infinite routes to student mastery but for students to get there requires the skill and knowledge of teachers to create deeper learning opportunities.

Continue reading

Topics: Next Generation Science Standards, STEAM, Growth Mindset, STEAM Curriculum, Next Generation Science, NGSS-Designed Curriculum

Tools to Develop a Growth Mindset in Cooperative Learning Discussions

Oct 26, 2021 by Judy Higgins

Whether you are currently using KnowAtom or not, all teachers know the importance of a great discussion. I'd like to share with you some of the teaching strategies I've learned over the past 20 years to help prepare your students for meaningful scientific discussion. If you're not a science teacher, many of the cooperative learning and growth mindset strategies I am going to discuss will work with your students as well.

What is a growth mindset? The education concept was developed by psychologist Carol Dweck and shared in her book Mindset: The New Psychology of Success. She writes, "In a fixed mindset, people believe their basic qualities, like their intelligence or talent, are simply fixed traits…. They also believe that talent alone creates success—without effort." In contrast, "In a growth mindset, people believe that their most basic abilities can be developed through dedication and hard work—brains and talent are just the starting point. This view creates a love of learning…." says Dweck.

Teachers who use the KnowAtom curriculum understand first-hand how implementing cooperative learning strategies, including Socratic dialogue, in the classroom improves student engagement and strengthens learning outcomes. I've also seen how as I give the reins more to my students, letting them take the lead in classroom discussions and small group projects, they can accomplish amazing things together. Seeing this first-hand has definitely strengthened my belief in a growth mindset!


Preparing for student-led discussions

Giving students the tools they need to prepare for a great discussion is something that we really need to remember to do because students don't always know how to do it on their own. With this support, we can create students who are confident in their ability to discuss their ideas. With Dweck's growth mindset in mind, we can prepare students to engage in cooperative learning strategies that strengthen their critical thinking skills and set them up to become lifelong learners.

When using the KnowAtom curriculum, there are simple steps to every lesson that we do together as a class. We always start with nonfiction reading. Then we move into a Socratic dialogue where the students discuss their thoughts and get ready for what they will be planning next. The goal of a great classroom discussion is to create a bridge between what the students have read and the lab they will soon be preparing for. They are better prepared when we get to the cooperative learning groups' hands-on science investigation because of this step-by-step process.

The most important part of a good Socratic discussion is that the teacher is not the only one asking the questions. The students ask each other questions. They challenge each other to defend their thinking, and in the process, learn to use evidence to support their arguments. It's important to remember that cooperative learning doesn't happen overnight. When I started teaching with KnowAtom, my students were really excited about what they read. When it came time for the formal discussion, I assumed they would be very eager to discuss the information. I was wrong – we just sat there. The students either looked at me with panic or looked at their lab books. I was the only one asking questions. So, I had to go back and think about, how am I going to help my students feel prepared and comfortable to discuss these lessons?

Developing cooperative learning routines

The first thing we do together is develop routines. First, students gather the resources they need. Next, we review pre-lesson questions to get the students thinking about what they are going to read about. For the reading portion, we develop different cooperative learning strategies, including reading individually, as a class, or with a partner. We also use read-aloud videos and reading strategies to help all students access the nonfiction text. Finally, we use picture thinking graphic organizers to help students focus on the pictures from the text.

Continue reading

Topics: Next Generation Science Standards, STEAM, Growth Mindset, STEAM Curriculum, Next Generation Science, NGSS-Designed Curriculum, Remote Learning, KWL Chart

Cooperative Learning Strategies, Activities and Checkpoints

Oct 17, 2021 by Judy Higgins

Updated on November 10, 2023

Cooperative learning is essential to implementing effective NGSS-led instructional methods. When taking the lead on their own learning process during cooperative learning activities, students are constructing their own understanding of the content, linking it to their current knowledge, learning from one another, and making personal connections with the subject matter and the world around them. In this article, you’ll learn what cooperative learning is and how cooperative learning strategies are supported by the use of checkpoints.

What is Cooperative Learning?

Cooperative learning is an instructional model designed to improve student learning outcomes by promoting collaborative, structured activities in small groups of students. When collaborating in small groups of two to four peers, students have the opportunity to take responsibility for their own learning and act independently of a whole whole group environment.

Continue reading

Topics: science and engineering practices, Next Generation Science Standards, higher order thinking, STEAM, interactive science, Professional Development, STEAM Curriculum, Next Generation Science, NGSS-Designed Curriculum

CER Sentence Starters Help Students Form Claim Evidence Reasoning

Oct 12, 2021 by Judy Higgins

Updated on April 5th, 2024.

Teachers know the feeling – it's either absolute silence in your classroom when it's time to kick-off a classroom discussion, or everyone is talking at once and over each other. One of the tools I have used to help students get comfortable talking in the classroom while implementing KnowAtom's inquiry-based science curriculum is sentence starters. When students first come to us, they may need help understanding how to begin a group conversation and how to take part in one respectfully. In addition, learning active listening skills is just as important.

How Do CER Sentence Starters Help Students?

CER sentence starters help students strengthen critical thinking and speaking skills, providing the tools they need to become active rather than passive participants in the classroom. Students learn to ask questions of themselves and their peers, identify missing pieces of information, and actively listen.

Let's explore how analysis sentence starters can help students learn how to listen to one another and form claim, evidence, reasoning (CER) arguments, rather than talking at or over their peers. I am going to use examples from the KnowAtom STEM curriculum to show you how to implement CER sentence starters. But it's important to note that sentence starters for evidence can be used as discourse frames for just about any subject. Ultimately, they help students learn how to talk, listen, and support their arguments with evidence and reasoning.

Improving Student Discourse and Encouraging Discovery with CER Sentence Starters

The KnowAtom curriculum starts off with nonfiction reading, followed by Socratic dialogue for each lesson. The sentence starters tool helps students get the most out of group discourse while using evidence from prior knowledge, respecting their peers, and learning from different viewpoints and experiences. Within classroom discussions, students take the lead in discovering what's most important about the reading and what connections can be made to concepts they already know. These discussions serve as a useful bridge to the hands-on part of the lessons, where students investigate, experiment, and engineer together. Classroom discourse is an important part of helping students think critically about what they've read and how they can use that information in their lab work.

Continue reading

The Best Formative Assessment for Accelerated Learning in Student Centered Classrooms

Oct 3, 2021 by Judy Higgins

To help students achieve accelerated learning in the classroom, teachers need to improve how we set and communicate our expectations. In student-centered learning, students choose what they will learn, and they set the pace. Teachers become classroom facilitators when their students take the lead in an accelerated learning program. Implementing formative assessments in a student centered classroom will improve outcomes because students better understand the expectations because they are getting continuous feedback in the moment.

What's the difference between formative and summative assessments? Formative assessments occur in the moment as students are engaged in making sense of phenomena. This real-time approach allows students to incorporate the feedback into their thinking and their work, becoming more aware of their own learning process and refining their skills in the moment. In a formative assessment, the teacher's role is an interested skeptic, engaged in the student's argument but pressing for evidence and reasoning. A formative assessment requires a shift in responsibility. Instead of a student trying to guess what the teacher wants, the student is productively struggling to develop skills and content knowledge, with support/coaching from the teacher. Summative assessments are more high stakes and occur less frequently, typically at the end of a lesson or unit.

Continue reading

Topics: science and engineering practices, Next Generation Science Standards, interactive science, STEAM Curriculum, Next Generation Science, NGSS-Designed Curriculum

Learning Styles Are More About Teaching Styles: Teaching All Learners

Sep 21, 2021 by Judy Higgins

One thing I've learned over the past 20 years of teaching is that learning styles are really more about teaching styles. There are many different types of learning styles and it's important to make sure that we are teaching all learners and giving students the tools they need to succeed in the classroom. One example of how to accomplish this challenge in your own classroom is by improving access to the assigned reading for all students. To help, I am going to share the tools and strategies I use to engage all students in the nonfiction reading component of the KnowAtom science curriculum.

KnowAtom's next generation science standards (NGSS)-designed curriculum uses a similar routine for each lesson so that students begin to know what to expect. For each lesson within every unit, we start out reading. Students then take part in a Socratic dialogue using what they've learned from the reading. Next, we plan for a hands-on experiment, investigation, or engineering prototype. To wrap up the investigation, teams share their conclusions and debrief. As you can see, the nonfiction reading provides the launching point for each lesson.

No matter what level a student is reading at, whether they are an English language learner or whether they are predominantly a visual vs. an auditory learner, it's important that they can access the information in the reader upfront. To help students with different types of learning styles access the nonfiction text, teachers must understand how students learn differently. One popular model is the VARK learning styles theory. VARK identifies four different learning styles: visual, auditory, kinesthetic, and reading/writing. While most students have a combination of these different types of learning styles, some students learn predominantly from only one.

Connecting new phenomena to past experience

When beginning a new lesson, teachers should consider what knowledge and experiences students bring with them to the class. By establishing a common background when introducing new phenomena, teachers help level the playing field for students who are at different places along their learning journey.

For example, if we're investigating friction and the impact that a dog sled might have moving over snow, that context would be really difficult for a student who hasn't experienced snow to think about. "I don't understand because I don't know what it's like to walk on snow. I don't know the properties of snow. I haven't experienced that," the student is thinking. With the KnowAtom curriculum, the text before every unit helps give every student a common background and some insight into the phenomena they're about to explore.

For students with reading/writing predominance in their VARK learning style, reading the text before the hands-on experiment helps them understand the new concept when it is introduced. But that's not the only type of learning style you have in your classroom. Visual learners are better supported by the visuals in the nonfiction reader, including photos, charts, and graphs with explanatory text. Auditory learners may learn best from classroom discussions about the reading and can be supported by tools like sentence starter frames and annotating the text, so they come to the class discussion with the right questions to ask. Finally, kinesthetic learners learn from doing – and the tactile experience of completing an engineering project related to the new concept will help them better understand the lesson.

Another way students with all different types of learning styles can relate to the nonfiction text in the KnowAtom student readers is by connecting the new information to current knowledge – what they've learned before. Students start to think about, "Oh, I remember learning a little bit about that last year," or "I experienced something like this when I was cooking at home and the water started to boil." When working in pairs, small groups, or as a class – teachers can help students connect new phenomena with current knowledge by asking questions about what they've learned from the text and what it reminds them of.

KnowAtom's introductory text helps students start to think about what they will be exploring in the hands-on activity. It introduces or reinforces the vocabulary needed for the Socratic discourse, so students feel more comfortable joining in the classroom discussion. When using KnowAtom's NGSS-designed curriculum, we challenge our students to act like scientists and engineers, interacting with their peers in a professional setting. This helps level the playing field even further because all students are accessing the same vocabulary when discussing the new phenomenon and understand the rules of engagement when taking part in the classroom discussion.


Tools to strengthen reading fundamentals for all types of learning styles

One of the first things I do to help improve access to the reading material for all students is using prereading tools. The majority of my students are English learners, so they are often not reading at grade level yet. One tool I use to help them access the text is focusing on pictures. Asking students to find meaning in the images in KnowAtom's student readers and using a picture thinking graphic organizer helps them identify the images' object, action, and property. Students build critical thinking and active reading skills as they wonder what they will be reading about through the images and connect it to their current knowledge. This can be done together as a class, or in small student groups, or individually.

Continue reading

Topics: Next Generation Science Standards, higher order thinking, Socratic dialogue, STEM / STEAM, Middle School Science Curriculum, Next Generation Science, Implementing New Science Standards, NGSS-Designed Curriculum, Phenomena-Based Learning, Remote Learning, Thinking Routines

The Best KWL Chart is Actually a Picture Thinking Routine

Sep 15, 2021 by Judy Higgins

What is a KWL chart, and how is it used in teaching science? Let's take a look first at what the 'KWL' stands for – it's an acronym for what students KNOW, WANT to know, and will LEARN during a lesson. KWL charts are graphic organizers that help students collect information before, during, and after a unit. Using a KWL graphic organizer supports the constructivist teaching model – the idea that deeper learning happens when students are actively involved in the learning process instead of passive recipients of new information.

When teachers use KWL charts to introduce new ideas and topics, they help students identify what they already know about the topic and better understand the objectives of the lesson. KWL charts can also be used by teachers to monitor student success. KWL charts help guide students through nonfiction texts, as they track their progress in three columns titled KNOW, WANT, and LEARNED. There are many different KWL chart format examples, and they can be used to teach a variety of topics and subject areas. I am going to share how I used a Picture-Thinking graphic organizer (one type of KWL chart) with the KnowAtom science curriculum to implement the Picture-Thinking reading strategy. This graphic organizer is even better than a KWL chart because students are working within a context to identify what they know, want to know, and what they've learned. I have been a teacher for about 20 years, and for the last five years of my teaching I have used the KnowAtom curriculum.


KWL Charts and Picture-Thinking Reading Comprehension

The picture-thinking routine is one of my favorite routines. I started using this in my classroom about two years ago, and it really made a huge difference in my students' engagement with nonfiction texts. When I made it part of my regular classroom routine, students started thinking in such different ways. I'm going to take you step-by-step through exactly how to implement this routine in your own classroom, using the Picture-Thinking graphic organizer to help.

What is a "picture thinker?" A picture thinker is someone who thinks more in pictures than in words or sounds. Incorporating the picture-thinking routine in your classroom will help not only those students who think "in pictures," it's a great way for all students to make strong connections between the context and new vocabulary words, concepts, and what they already know. Here's an example of a Picture-Thinking KWL graphic organizer I use in my classroom:

Continue reading

Topics: Next Generation Science Standards, interactive science, Inquiry Based Learning, Next Generation Science Classroom Instruction, science education, KWL Chart, Thinking Routines

CER Science with Thinking Moves: Using Claim Evidence Reasoning

Aug 31, 2021 by Judy Higgins

What is CER? CER stands for Claim, Evidence, Reasoning. It is essentially a framework that educators use to teach the scientific method. Simplified, it looks like:

Claim (answer to a question) + Evidence (student’s data) + Reasoning (scientific principle or rule)

When we ask students to support scientific claims using CER and we model thinking moves in the process, we help spark their own curiosity about the world around them. When teachers introduce KnowAtom’s hands-on engineering labs and science experiments, they are bringing real world phenomena into the classroom. And when students make a scientific claim and back it up, they are taking charge of their own learning process.

Learning about thinking moves was one of the most transformative steps in my 20-year teaching career. One of my favorite quotes is from an American writer, Elbert Hubbard, who said, “The object of teaching a child is to enable him to get along without a teacher.” Thinking moves provide a structured approach to better understanding how we think. For teachers, it’s also a well-tested strategy to help propel students towards learning connected to their own natural curiosity and cognitive abilities. When students take the reins in the classroom, studies overwhelmingly show that engagement levels rise, and learning outcomes do too.

Thinking Moves in the Classroom, CER, and NGSS

Whether you are an educator, parent, guardian, or principal – you can learn from teachers who incorporate thinking moves into their classrooms. Thinking moves help students develop a much deeper level of understanding of the topic at hand. Here’s a list of thinking moves developed by the authors of Making Things Visible (2011):

1. Observing closely and describing what’s there
2. Building explanations and interpretations
3. Reasoning with evidence
4. Making connections
5. Considering different viewpoints and perspectives
6. Capturing the heart and forming conclusions
7. Wondering and asking questions
8. Uncovering complexity and going below the surface of things

You’ve probably already noticed how well these go along with next generation science skills (NGSS). For those teaching science and engineering practices in the classroom – here’s how thinking moves align directly with STEM:

Continue reading

Topics: Next Generation Science Standards, STEAM, Thinking Moves, Frame Model, Discourse Frames

Constructivism In the Classroom: Concept Mapping for NGSS

Aug 23, 2021 by Judy Higgins

As a science teacher for over 20 years, I’ve seen a lot of teaching strategies come and go. Today, the focus is on Next Generation Science Standards (NGSS) to help prepare students to join the workforce of the future. The teaching methods required by NGSS are based on constructivism – the idea that learners actively create new knowledge and understanding based on what they already know. Concept mapping is one way to help students link new ideas to knowledge they already have.

Continue reading

Topics: Next Generation Science Standards, STEAM, interactive science, Professional Development, Inquiry Based Learning, STEAM Curriculum, Next Generation Science, Implementing New Science Standards, NGSS-Designed Curriculum, Next Generation Science Classroom Instruction, Phenomena-Based Learning, science education, Remote Learning, Formative Assessment

Teach to Transform with Free Next Generation Science PD Sessions. Learn More!

Posts by Topic

see all

Stay Up to Date With Our Latest Posts

Pick How Often: